
discard this page

The RAND MH
Message Handling System:

User’s Manual

UCI Version

November 30, 1993
6.8.3 #1[UCI]

1. INTRODUCTION

Although people can travel cross-country in hours and can reach others by telephone in
seconds, communications still depend heavily upon paper, most of which is distributed through
the mails.

There are several major reasons for this continued dependence on written documents.
First, a written document may be proofread and corrected prior to its distribution, giving the
author complete control over his words. Thus, a written document is better than a telephone
conversation in this respect. Second, a carefully written document is far less likely to be misin-
terpreted or poorly translated than a phone conversation. Third, a signature offers reasonable
verification of authorship, which cannot be provided with media such as telegrams.

However, the need for fast___, accurate, and reproducible document distribution is obvious.
One solution in widespread use is the telefax. Another that is rapidly gaining popularity is elec-
tronic mail. Electronic mail is similar to telefax in that the data to be sent are digitized,
transmitted via phone lines, and turned back into a document at the receiver. The advantage of
electronic mail is in its compression factor. Whereas a telefax must scan a page in very fine
lines and send all of the black and white information, electronic mail assigns characters fixed
codes which can be transmitted as a few bits of information. Telefax presently has the advan-
tage of being able to transmit an arbitrary page, including pictures, but electronic mail is begin-
ning to deal with this problem. Electronic mail also integrates well with current directions in
office automation, allowing documents prepared with sophisticated equipment at one site to be
quickly transferred and printed at another site.

Currently, most electronic mail is intraorganizational, with mail transfer remaining
within one computer. As computer networking becomes more common, however, it is becom-
ing more feasible to communicate with anyone whose computer can be linked to your own via a
network.

The pioneering efforts on general-purpose electronic mail were by organizations using
the DoD ARPAnet[1]. The capability to send messages between computers existed before the
ARPAnet was developed, but it was used only in limited ways. With the advent of the
ARPAnet, tools began to be developed which made it convenient for individuals or organiza-
tions to distribute messages over broad geographic areas, using diverse computer facilities. The
interest and activity in message systems has now reached such proportions that steps have been
taken within the DoD to coordinate and unify the development of military message systems.
The use of electronic mail is expected to increase dramatically in the next few years. The util-
ity of such systems in the command and control and intelligence environments is clear, and
applications in these areas will probably lead the way. As the costs for sending and handling
electronic messages continue their rapid decrease, such uses can be expected to spread rapidly
into other areas and, of course, will not be limited to the DoD.

A message system provides tools that help users (individuals or organizations) deal with
messages in various ways. Messages must be composed, sent, received, stored, retrieved, for-
warded, and replied to. Today’s best interactive computer systems provide a variety of word-
processing and information handling capabilities. The message handling facilities should be
well integrated with the rest of the system, so as to be a graceful extension of overall system
capability.

The message system described in this report, MH, provides most of the features that can
be found in other message systems and also incorporates some new ones. It has been built on

the UNIX time-sharing system[2], a popular operating system for the DEC PDP-111 and VAX-

-2-

11 classes of computers. A ‘‘secure’’ operating system similar to UNIX is currently being
developed[3], and that system will also run MH.

This report provides a complete description of MH and thus may serve as a user’s
manual, although parts of the report will be of interest to non-users as well. Sections 2 and 3,
the Overview and Tutorial, present the key ideas of MH and will give those not familiar with
message systems an idea of what such systems are like.

MH consists of a set of commands which use some special files and conventions. The
final section is divided into three parts. The first part covers the information a user needs to
know in addition to the commands. Then, each of the MH commands is described in detail.
Finally, other obscure details are revealed. A summary of the commands is given in Appendix
A, and the syntax of message sequences is given in Appendix B.

A novel approach has been taken in the design of MH. Instead of creating a large subsys-
tem that appears as a single command to the user (such as MS[4]), MH is a collection of
separate commands which are run as separate programs. The file and directory system of UNIX
are used directly. Messages are stored as individual files (datasets), and collections of them are
grouped into directories. In contrast, most other message systems store messages in a compli-
cated data structure within a monolithic file. With the MH approach, UNIX commands can be
interleaved with commands invoking the functions of the message handler. Conversely, exist-
ing UNIX commands can be used in connection with messages. For example, all the usual
UNIX editing, text-formatting, and printing facilities can be applied directly to individual mes-
sages. MH, therefore, consists of a relatively small amount of new code; it makes extensive use
of other UNIX software to provide the capabilities found in other message systems.

1 PDP and VAX are trademarks of Digital Equipment Corporation.

2. OVERVIEW

There are three main aspects of MH : the way messages are stored (the message data-
base), the user’s profile (which directs how certain actions of the message handler take place),
and the commands for dealing with messages.

Under MH, each message is stored as a separate file. A user can take any action with a
message that he could with an ordinary file in UNIX. A UNIX directory in which messages are
stored is called a folder. Each folder contains some standard entries to support the message-
handling functions. The messages in a folder have numerical names. These folders (direc-
tories) are entries in a particular directory path, described in the user profile, through which MH
can find message folders. Using the UNIX ‘‘link’’ facility, it is possible for one copy of a mes-
sage to be ‘‘filed’’ in more than one folder, providing a message index facility. Also, using the
UNIX tree-structured file system, it is possible to have a folder within a folder, nested arbi-
trarily deep, and have the full power of the MH commands available.

Each user of MH has a user profile, a file in his $HOME (initial login) directory called
.mh_profile. This profile contains several pieces of information used by the MH commands: a
path name to the directory that contains the message folders and parameters that tailor MH
commands to the individual user’s requirements. There is also another file, called the user con-
text, which contains information concerning which folder the user last referenced (the
‘‘current’’ folder). It also contains most of the necessary state information concerning how the
user is dealing with his messages, enabling MH to be implemented as a set of individual UNIX
commands, in contrast to the usual approach of a monolithic subsystem.

In MH, incoming mail is appended to the end of a file in a system spooling area for the
user. This area is called the mail drop directory, and the file is called the user’s mail drop. Nor-
mally when the user logins in, s/he is informed of new mail (or the MH program msgchk may
be run). The user adds the new messages to his/her collection of MH messages by invoking the
command inc. The inc (incorporate) command adds the new messages to a folder called
‘‘inbox’’, assigning them names which are consecutive integers starting with the next highest
integer available in inbox. inc also produces a scan summary of the messages thus incor-
porated. A folder can be compacted into a single file, for easy storage, by using the packf com-
mand. Also, messages within a folder can be sorted by date and time with the sortm command.

There are four commands for examining the messages in a folder: show, prev, next, and
scan. The show command displays a message in a folder, prev displays the message preceding
the current message, and next displays the message following the current message. MH lets the
user choose the program that displays individual messages. A special program, mhl, can be
used to display messages according to the user’s preferences. The scan command summarizes
the messages in a folder, normally producing one line per message, showing who the message
is from, the date, the subject, etc.

The user may move a message from one folder to another with the command refile. Mes-
sages may be removed from a folder by means of the command rmm. In addition, a user may
query what the current folder is and may specify that a new folder become the current folder,
through the command folder. All folders may be summarized with the folders command. A
message folder (or subfolder) may be removed by means of the command rmf.

A set of messages based on content may be selected by use of the command pick. This
command searches through messages in a folder and selects those that match a given set of cri-
teria. These messages are then bound to a ‘‘sequence’’ name for use with other MH commands.

-3-

-4-

The mark command manipulates these sequences.

There are five commands enabling the user to create new messages and send them: comp,
dist, forw, repl, and send. The comp command provides the facility for the user to compose a
new message; dist redistributes mail to additional addressees; forw enables the user to forward
messages; and repl facilitates the generation of a reply to an incoming message. The last three
commands may optionally annotate the original message. Messages may be arbitrarily anno-
tated with the anno command. Once a draft has been constructed by one of the four above
composition programs, a user–specifiable program is run to query the user as to the disposition
of the draft prior to sending. MH provides the simple whatnow program to start users off. If a
message is not sent directly by one of these commands, it may be sent at a later time using the
command send. MH allows the use of any UNIX editor when composing a message. For rapid
entry, a special editor, prompter, is provided. For programs, a special mail-sending program,
mhmail, is provided.

MH supports a personal aliasing facility which gives users the capability to considerably
shorten address typein and use meaningful names for addresses. The ali program can be used
to query MH as to the expansion of a list of aliases. After composing a message, but prior to
sending, the whom command can be used to determine exactly who a message would go to.

MH provides a natural interface for telling the user’s shell the names of MH messages
and folders. The mhpath program achieves this capability.

Finally, MH supports the UCI BBoards facility. bbc can be used to query the status of a
group of BBoards, while msh can be used to read them. The burst command can be used to
‘‘shred’’ digests of messages into individual messages.

All of the elements summarized above are described in more detail in the following sec-
tions. Many of the normal facilities of UNIX provide additional capabilities for dealing with
messages in various ways. For example, it is possible to print messages on the line-printer
without requiring any additional code within MH . Using standard UNIX facilities, any termi-
nal output can be redirected to a file for repeated or future viewing. In general, the flexibility
and capabilities of the UNIX interface with the user are preserved as a result of the integration
of MH into the UNIX structure.

3. TUTORIAL

This tutorial provides a brief introduction to the MH commands. It should be sufficient
to allow the user to read his mail, do some simple manipulations of it, and create and send mes-
sages.

A message has two major pieces: the header and the body. The body consists of the text
of the message (whatever you care to type in). It follows the header and is separated from it by
an empty line. (When you compose a message, the form that appears on your terminal shows a
line of dashes after the header. This is for convenience and is replaced by an empty line when
the message is sent.) The header is composed of several components, including the subject of
the message and the person to whom it is addressed. Each component starts with a name and a
colon; components must not start with a blank. The text of the component may take more than
one line, but each continuation line must start with a blank. Messages typically have ‘‘To:’’,
‘‘cc:’’, and ‘‘Subject:’’ components. When composing a message, you should include the
‘‘To:’’ and ‘‘Subject:’’ components; the ‘‘cc:’’ (for people you want to send copies to) is not
necessary.

The basic MH commands are inc, scan, show, next, prev, rmm, comp, and repl. These are
described below.

inc

When you get the message ‘‘You have mail’’, type the command inc. You will get a
‘‘scan listing’’ such as:

7+ 7/13 Cas revival of measurement work
8 10/ 9 Norm NBS people and publications
9 11/26 To:norm question <<Are there any functions

This shows the messages you received since the last time you executed this command
(inc adds these new messages to your inbox folder). You can see this list again, plus a list of
any other messages you have, by using the scan command.

scan

The scan listing shows the message number, followed by the date and the sender. (If you
are the sender, the addressee in the ‘‘To:’’ component is displayed. You may send yourself a
message by including your name among the ‘‘To:’’ or ‘‘cc:’’ addressees.) It also shows the
message’s subject; if the subject is short, the first part of the body of the message is included
after the characters <<.

show

This command shows the current message, that is, the first one of the new messages after
an inc. If the message is not specified by name (number), it is generally the last message
referred to by an MH command. For example,

show 5 will show message 5.

-5-

-6-

You can use the show command to copy a message or print a message.

show > x will copy the message to file x.
show | lpr will print the message, using the lpr command.
next will show the message that follows the current message.
prev will show the message previous to the current message.
rmm will remove the current message.
rmm 3 will remove message 3.

comp

The comp command puts you in the editor to write or edit a message. Fill in or delete the
‘‘To:’’, ‘‘cc:’’, and ‘‘Subject:’’ fields, as appropriate, and type the body of the message. Then
exit normally from the editor. You will be asked ‘‘What now?’’. Type a carriage return to see
the options. Typing send will cause the message to be sent; typing quit will cause an exit from
comp, with the message draft saved.

If you quit without sending the message, it will be saved in a file called
<name>/Mail/draft (where <name> is your $HOME directory). You can resume editing the
message later with ‘‘comp –use’’; or you can send the message later, using the send command.

comp –editor prompter

This command uses a different editor and is useful for preparing ‘‘quick and dirty’’ mes-
sages. It prompts you for each component of the header. Type the information for that com-
ponent, or type a carriage return to omit the component. After that, type the body of the mes-
sage. Backspacing is the only form of editing allowed with this editor. When the body is com-
plete, type a carriage return followed by <EOT> (usually <CTRL-D>). This completes the ini-
tial preparation of the message; from then on, use the same procedures as with comp (above).

repl
repl n

This command makes up an initial message form with a header that is appropriate for
replying to an existing message. The message being answered is the current message if no mes-
sage number is mentioned, or n if a number is specified. After the header is completed, you can
finish the message as in comp (above).

This is enough information to get you going using MH. There are more commands, and
the commands described here have more features. Subsequent sections explain MH in com-
plete detail. The system is quite powerful if you want to use its sophisticated features, but the
foregoing commands suffice for sending and receiving messages.

There are numerous additional capabilities you may wish to explore. For example, the
pick command will select a subset of messages based on specified criteria such as sender and/or
subject. Groups of messages may be designated, as described in Sec. IV, under Message Nam-
ing. The file .mh_profile can be used to tailor your use of the message system to your needs
and preferences, as described in Sec. IV, under The User Profile. In general, you may learn
additional features of the system selectively, according to your requirements, by studying the
relevant sections of this manual. There is no need to learn all the details of the system at once.

4. DETAILED DESCRIPTION

This section describes the MH system in detail, including the components of the user
profile, the conventions for message naming, and some of the other MH conventions. Readers
who are generally familiar with computer systems will be able to follow the principal ideas,
although some details may be meaningful only to those familiar with UNIX.

THE USER PROFILE

The first time an MH command is issued by a new user, the system prompts for a ‘‘Path’’
and creates an MH ‘‘profile’’.

Each MH user has a profile which contains tailoring information for each individual pro-
gram. Other profile entries control the MH path (where folders and special files are kept),
folder and message protections, editor selection, and default arguments for each MH program.
Each user of MH also has a context file which contains current state information for the MH
package (the location of the context file is kept in the user’s MH directory, or may be named in
the user profile). When a folder becomes the current folder, it is recorded in the user’s context.
(Other state information is kept in the context file, see the manual entry for mh–profile (5) for
more details.) In general, the term ‘‘profile entry’’ refer to entries in either the profile or context
file. Users of MH needn’t worry about the distinction, MH handles these things automatically.

The MH profile is stored in the file .mh_profile in the user’s $HOME directory1. It has
the format of a message without any body. That is, each profile entry is on one line, with a key-
word followed by a colon (:) followed by text particular to the keyword.
⇒ This file must not have blank lines.
The keywords may have any combination of upper and lower case. (See the information of
mh–mail later on in this manual for a description of message formats.)

For the average MH user, the only profile entry of importance is ‘‘Path’’. Path specifies a
directory in which MH folders and certain files such as ‘‘draft’’ are found. The argument to
this keyword must be a legal UNIX path that names an existing directory. If this path is not
absolute (i.e., does not begin with a /), it will be presumed to start from the user’s $HOME
directory. All folder and message references within MH will relate to this path unless full path
names are used.

Message protection defaults to 644, and folder protection to 711. These may be changed
by profile entries ‘‘Msg-Protect’’ and ‘‘Folder-Protect’’, respectively. The argument to these

keywords is an octal number which is used as the UNIX file mode2.

When an MH program starts running, it looks through the user’s profile for an entry with
a keyword matching the program’s name. For example, when comp is run, it looks for a
‘‘comp’’ profile entry. If one is found, the text of the profile entry is used as the default switch
setting until all defaults are overridden by explicit switches passed to the program as argu-
ments. Thus the profile entry ‘‘comp: –form standard.list’’ would direct comp to use the file
‘‘standard.list’’ as the message skeleton. If an explicit form switch is given to the comp com-
mand, it will override the switch obtained from the profile.

1 By defining the envariable $MH, you can specify an alternate profile to be used by MH commands.
2 See chmod (1) in the UNIX Programmer’s Manual [5].

-7-

-8-

In UNIX, a program may exist under several names, either by linking or aliasing. The

actual invocation name is used by an MH program when scanning for its profile defaults3.
Thus, each MH program may have several names by which it can be invoked, and each name
may have a different set of default switches. For example, if comp is invoked by the name
icomp, the profile entry ‘‘icomp’’ will control the default switches for this invocation of the
comp program. This provides a powerful definitional facility for commonly used switch set-
tings.

The default editor for editing within comp, repl, forw, and dist, is usually prompter, but
might be something else at your site, such as /usr/ucb/ex or /bin/e. A different editor may be
used by specifying the profile entry ‘‘Editor: ’’. The argument to ‘‘Editor’’ is the name of an
executable program or shell command file which can be found via the user’s $PATH defined
search path, excluding the current directory. The ‘‘Editor:’’ profile specification may in turn be
overridden by a ‘–editor <editor>’ profile switch associated with comp, repl, forw, or dist.
Finally, an explicit editor switch specified with any of these four commands will have ultimate
precedence.

During message composition, more than one editor may be used. For example, one edi-
tor (such as prompter) may be used initially, and a second editor may be invoked later to
revise the message being composed (see the discussion of comp in Section 5 for details). A
profile entry ‘‘<lasteditor>–next: <editor>’’ specifies the name of the editor to be used after a
particular editor. Thus ‘‘comp: –e prompter’’ causes the initial text to be collected by
prompter, and the profile entry ‘‘prompter–next: ed’’ names ed as the editor to be invoked for
the next round of editing.

Some of the MH commands, such as show, can be used on message folders owned by
others, if those folders are readable. However, you cannot write in someone else’s folder. All
the MH command actions not requiring write permission may be used with a ‘‘read-only’’
folder.

Table 1 lists examples of some of the currently defined profile entries, typical arguments,
and the programs that reference the entries.

3 Unfortunately, the shell does not preserve aliasing information when calling a program, hence if a program is
invoked by an alias different than its name, the program will examine the profile entry for it’s name, not the alias that
the user invoked it as. The correct solution is to create a (soft) link in your $HOME/bin directory to the MH program of
your choice. By giving this link a different name, you can use an alternate set of defaults for the command.

-9-

Table 1

PROFILE COMPONENTS

MH Programs that
Keyword and Argument use Component___

Path: Mail All
Current-Folder: inbox Most
Editor: /usr/ucb/ex comp, dist, forw, repl
Inbox: inbox inc, rmf
Msg–Protect: 644 inc
Folder–Protect: 711 inc, pick, refile
<program>: default switches All
prompter–next: ed comp, dist, forw, repl

Path should______be present. Current–Folder is maintained automatically by many MH com-
mands (see the Context sections of the individual commands in Sec. IV). All other entries are
optional, defaulting to the values described above.

MESSAGE NAMING

Messages may be referred to explicitly or implicitly when using MH commands. A for-
mal syntax of message names is given in Appendix B, but the following description should be
sufficient for most MH users. Some details of message naming that apply only to certain com-
mands are included in the description of those commands.

Most of the MH commands accept arguments specifying one or more folders, and one or
more messages to operate on. The use of the word ‘‘msg’’ as an argument to a command
means that exactly one message name may be specified. A message name may be a number,
such as 1, 33, or 234, or it may be one of the ‘‘reserved’’ message names: first, last, prev, next,
and cur. (As a shorthand, a period (.) is equivalent to cur.) The meanings of these names are
straightforward: ‘‘first’’ is the first message in the folder; ‘‘last’’ is the last message in the
folder; ‘‘prev’’ is the message numerically previous to the current message; ‘‘next’’ is the mes-
sage numerically following the current message; ‘‘cur’’ (or ‘‘.’’) is the current message in the
folder. In addition, MH supports user–defined–sequences; see the description of the mark com-
mand for more information.

The default in commands that take a ‘‘msg’’ argument is always ‘‘cur’’.

The word ‘‘msgs’’ indicates that several messages may be specified. Such a specification
consists of several message designations separated by spaces. A message designation is either a
message name or a message range. A message range is a specification of the form
name1–name2 or name1:n, where name1 and name2 are message names and n is an integer.
The first form designates all the messages from name1 to name2 inclusive; this must be a non-
empty range. The second form specifies up to n messages, starting with name1 if name1 is a
number, or first, cur, or next, and ending with name1 if name1 is last or prev. This interpreta-
tion of n is overridden if n is preceded by a plus sign or a minus sign; +n always means up to n
messages starting with name1, and –n always means up to n messages ending with name1.
Repeated specifications of the same message have the same effect as a single specification of
the message. Examples of specifications are:

-10-

1 5 7–11 22
first 6 8 next
first–10
last:5

The message name ‘‘all’’ is a shorthand for ‘‘first–last’’, indicating all of the messages in
the folder.

In commands that accept ‘‘msgs’’ arguments, the default is either cur or all, depending
on which makes more sense.

In all of the MH commands, a plus sign preceding an argument indicates a folder name.
Thus, ‘‘+inbox’’ is the name of the user’s standard inbox. If an explicit folder argument is
given to an MH command, it will become the current folder (that is, the ‘‘Current-Folder:’’
entry in the user’s profile will be changed to this folder). In the case of the refile command,
which can have multiple output folders, a new source folder (other than the default current
folder) is specified by ‘–src +folder’.

OTHER MH CONVENTIONS

One very powerful feature of MH is that the MH commands may be issued from any
current directory, and the proper path to the appropriate folder(s) will be taken from the user’s
profile. If the MH path is not appropriate for a specific folder or file, the automatic prepending
of the MH path can be avoided by beginning a folder or file name with /, or with ./ or ../ com-
ponent. Thus any specific absolute path may be specified along with any path relative to the
current working directory.

Arguments to the various programs may be given in any order, with the exception of a
few switches whose arguments must follow immediately, such as ‘–src +folder’ for refile.

Whenever an MH command prompts the user, the valid options will be listed in response
to a <RETURN>. (The first of the listed options is the default if end-of-file is encountered,
such as from a command file.) A valid response is any unique abbreviation of one of the listed
options.

Standard UNIX documentation conventions are used in this report to describe MH com-
mand syntax. Arguments enclosed in brackets ([]) are optional; exactly one of the arguments
enclosed within braces ({ }) must be specified, and all other arguments are required. The use of
ellipsis dots (...) indicates zero or more repetitions of the previous item. For example, ‘‘+folder
...’’ would indicate that one or more ‘‘+folder’’ arguments is required and ‘‘[+folder ...]’’ indi-
cates that 0 or more ‘‘+folder’’ arguments may be given.

MH departs from UNIX standards by using switches that consist of more than one char-
acter, e.g. ‘–header’. To minimize typing, only a unique abbreviation of a switch need be
typed; thus, for ‘–header’, ‘–hea’ is probably sufficient, depending on the other switches the
command accepts. Each MH program accepts the switch ‘–help’ (which must be spelled out
fully) and produces a syntax description and a list of switches. In the list of switches,
parentheses indicate required characters. For example, all ‘–help’ switches will appear as
‘‘–(help)’’, indicating that no abbreviation is accepted. Furthermore, the ‘–help’ switch tells
the version of the MH program you invoked.

Many MH switches have both on and off forms, such as ‘–format’ and ‘–noformat’. In
many of the descriptions which follow, only one form is defined; the other form, often used to
nullify profile switch settings, is assumed to be the opposite.

-11-

MH COMMANDS

The MH package comprises several programs:

ali (1) – list mail aliases
anno (1) – annotate messages
bbc (1) – check on BBoards
bboards (1) – the UCI BBoards facility
burst (1) – explode digests into messages
comp (1) – compose a message
dist (1) – redistribute a message to additional addresses
folder (1) – set/list current folder/message
folders (1) – list all folders
forw (1) – forward messages
inc (1) – incorporate new mail
mark (1) – mark messages
mhl (1) – produce formatted listings of MH messages
mhmail (1) – send or read mail
mhook (1) – MH receive–mail hooks
mhparam (1) – print MH profile components
mhpath (1) – print full pathnames of MH messages and folders
msgchk (1) – check for messages
msh (1) – MH shell (and BBoard reader)
next (1) – show the next message
packf (1) – compress a folder into a single file
pick (1) – select messages by content
prev (1) – show the previous message
prompter (1) – prompting editor front end
rcvstore (1) – incorporate new mail asynchronously
refile (1) – file messages in other folders
repl (1) – reply to a message
rmf (1) – remove folder
rmm (1) – remove messages
scan (1) – produce a one line per message scan listing
send (1) – send a message
show (1) – show (list) messages
slocal (1) – special local mail delivery
sortm (1) – sort messages
vmh (1) – visual front–end to MH
whatnow (1) – prompting front–end for send
whom (1) – report to whom a message would go

These programs are described below. The form of the descriptions conforms to the stan-
dard form for the description of UNIX commands.

ALI(1) -12- ALI(1)

NAME

ali – list mail aliases

SYNOPSIS

ali [–alias aliasfile] [–list] [–nolist] [–normalize] [–nonormalize] [–user] [–nouser] aliases ... [–help]

DESCRIPTION

Ali searches the named mail alias files for each of the given aliases. It creates a list of addresses for those
aliases, and writes that list on standard output. If the ‘–list’ option is specified, each address appears on a
separate line; otherwise, the addresses are separated by commas and printed on as few lines as possible.

The ‘–user’ option directs ali to perform its processing in an inverted fashion: instead of listing the
addresses that each given alias expands to, ali will list the aliases that expand to each given address. If the
‘–normalize’ switch is given, ali will try to track down the official hostname of the address.

The files specified by the profile entry ‘‘Aliasfile:’’ and any additional alias files given by the ‘–alias
aliasfile’ switch will be read. Each alias is processed as described in mh–alias (5).

Files

$HOME/.mh_profile The user profile
/etc/passwd List of users
/etc/group List of groups

Profile Components

Path: To determine the user’s MH directory
Aliasfile: For a default alias file

See Also

mh–alias(5)

Defaults

‘–alias /usr/local/lib/mh/MailAliases’
‘–nolist’
‘–nonormalize’
‘–nouser’

Context

None

Bugs

The ‘–user’ option with ‘–nonormalize’ is not entirely accurate, as it does not replace local nicknames for
hosts with their official site names.

[mh.6] MH.6.8 UCI version

ANNO(1) -13- ANNO(1)

NAME

anno – annotate messages

SYNOPSIS

anno [+folder] [msgs] [–component field] [–inplace] [–noinplace] [–date] [–nodate] [–text body] [–help]

DESCRIPTION

Anno annotates the specified messages in the named folder using the field and body. Annotation is option-
ally performed by dist, forw, and repl, to keep track of your distribution of, forwarding of, and replies to a
message. By using anno, you can perform arbitrary annotations of your own. Each message selected will
be annotated with the lines

field: date
field: body

The ‘–nodate’ switch inhibits the date annotation, leaving only the body annotation. The ‘–inplace’ switch
causes annotation to be done in place in order to preserve links to the annotated message.

The field specified should be a valid 822-style message field name, which means that it should consist of
alphanumerics (or dashes) only. The body specified is arbitrary text.

If a ‘–component field’ is not specified when anno is invoked, anno will prompt the user for the name of
field for the annotation.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder

See Also

dist (1), forw (1), repl (1)

Defaults

‘+folder’ defaults to the current folder
‘msgs’ defaults to cur
‘–noinplace’
‘–date’

Context

If a folder is given, it will become the current folder. The first message annotated will become the current
message.

[mh.6] MH.6.8 UCI version

BBC(1) -14- BBC(1)

NAME

bbc – check on BBoards

SYNOPSIS

bbc [bboards ...] [–topics] [–check] [–read] [–quiet] [–verbose] [–archive] [–noarchive] [–protocol]
[–noprotocol] [–mshproc program] [switches for mshproc] [–rcfile rcfile] [–norcfile]
[–file BBoardsfile] [–user BBoardsuser] [–help]

DESCRIPTION

bbc is a BBoard reading/checking program that interfaces to the BBoard channel.

The bbc program has three action switches which direct its operation:

The ‘–read’ switch invokes the msh program on the named BBoards. If you also specify the ‘–archive’
switch, then bbc will invoke the msh program on the archives of the named BBoards. If no BBoards are
given on the command line, and you specified ‘–archive’, bbc will not read your ‘bboards’ profile entry, but
will read the archives of the ‘‘system’’ BBoard instead.

The ‘–check’ switch types out status information for the named BBoards. bbc can print one of several mes-
sages depending on the status of both the BBoard and the user’s reading habits. As with each of these mes-
sages, the number given is the item number of the last item placed in the BBoard. This number (which is
marked in the messages as the ‘‘BBoard–Id’’) is ever increasing. Hence, when bbc says ‘‘n items’’, it
really means that the highest BBoard–Id is ‘‘n’’. There may, or may not actually be ‘‘n’’ items in the
BBoard. Some common messages are:

BBoard –– n items unseen
This message tells how many items the user has not yet seen. When invoked with the
‘–quiet’ switch, this is the only informative line that bbc will possibly print out.

BBoard –– empty
The BBoard is empty.

BBoard –– n items (none seen)
The BBoard has items in it, but the user hasn’t seen any.

BBoard –– n items (all seen)
The BBoard is non–empty, and the user has seen everything in it.

BBoard –– n items seen out of m
The BBoard has at most m–n items that the user has not seen.

The ‘–topics’ switch directs bbc to print three items about the named BBoards: it’s official name, the
number of items present, and the date and time of the last update. If no BBoards are named, then all
BBoards are listed. If the ‘–verbose’ switch is given, more information is output.

The ‘–quiet’ switch specifies that bbc should be silent if no BBoards are found with new information. The
‘–verbose’ switch specifies that bbc is to consider you to be interested in BBoards that you’ve already seen
everything in.

To override the default mshproc and the profile entry, use the ‘–mshproc program’ switch. Any arguments
not understood by bbc are passed to this program. The ‘–protocol’ switch tells bbc that your mshproc

[mh.6] MH.6.8 UCI version

BBC(1) -15- BBC(1)

knows about the special bbc protocol for reporting back information. msh (1), the default mshproc, knows
all about this.

The ‘–file BBoardsfile’ switch tells bbc to use a non–standard BBoards file when performing its calcula-
tions. Similarly, the ‘–user BBoardsuser’ switch tells bbc to use a non–standard username. Both of these
switches are useful for debugging a new BBoards or POP file.

The .bbrc file in the user’s $HOME directory is used to keep track of what messages have been read. The
‘–rcfile rcfile’ switch overrides the use of .bbrc for this purpose. If the value given to the switch is not
absolute, (i.e., does not begin with a /), it will be presumed to start from the current working directory. If
this switch is not given (or the ‘–norcfile’ switch is given), then bbc consults the envariable $MHBBRC,
and honors it similarly.

Files

$HOME/.mh_profile The user profile
$HOME/.bbrc BBoard ‘‘current’’ message information

Profile Components

Path: To determine the user’s MH directory
bboards: To specify interesting BBoards
mshproc: Program to read a given BBoard

See Also

bbl(1), bboards(1), msh(1)

Defaults

‘–read’
‘–noarchive’
‘–protocol’
‘bboards’ defaults to ‘‘system’’
‘–file /usr/spool/bboards/BBoards’
‘–user bboards’

Context

None

Bugs

The ‘–user’ switch takes effect only if followed by the ‘–file’ switch.

[mh.6] MH.6.8 UCI version

BBOARDS(1) -16- BBOARDS(1)

NAME

bboards – the UCI BBoards facility

SYNOPSIS

bbc [–check] [–read] bboards ... [–help]

DESCRIPTION

The home directory of bboards is where the BBoard system is kept. This documentation describes some of
the nuances of the BBoard system.

BBoards, BBoard–IDs
A BBoard is just a file containing a group of messages relating to the same topic. These files live
in the ˜bboards home directory. Each message in a BBoard file has in its header the line
‘‘BBoard-Id: n’’, where ‘‘n’’ is an ascending decimal number. This id-number is unique for each
message in a BBoards file. It should NOT be confused with the message number of a message,
which can change as messages are removed from the BBoard.

BBoard Handling
To read BBoards, use the bbc and msh programs. The msh command is a monolithic program
which contains all the functionality of MH in a single program. The ‘–check’ switch to bbc lets
you check on the status of BBoards, and the ‘–read’ switch tells bbc to invoke msh to read those
BBoards.

Creating a BBoard
Both public, and private BBoards are supported. Contact the mail address PostMaster if you’d
like to have a BBoard created.

BBoard addresses
Each BBoard has associated with it 4 addresses, these are (for the ficticious BBoard called
‘‘hacks’’):

hacks : The Internet wide distribution list.
dist-hacks : The local BBoard.
hacks-request : The people responsible for the BBoard at the Internet level.
local-hacks-request : The people responsible for the BBoard locally.

Files

$HOME/.mh_profile The user profile
$HOME/.bbrc BBoard information

Profile Components

Path: To determine the user’s MH directory
bboards: To specify interesting BBoards
mshproc: Program to read a given BBoard

See Also

bbc(1), bbl(1), bbleader(1), msh(1)

Defaults

The default bboard is ‘‘system’’

Context

None

[mh.6] MH.6.8 UCI version

BBOARDS(1) -17- BBOARDS(1)

NAME

burst – explode digests into messages

SYNOPSIS

burst [+folder] [msgs] [–inplace] [–noinplace] [–quiet] [–noquiet] [–verbose] [–noverbose] [–help]

DESCRIPTION

Burst considers the specified messages in the named folder to be Internet digests, and explodes them in that
folder.

If ‘–inplace’ is given, each digest is replaced by the ‘‘table of contents’’ for the digest (the original digest is
removed). Burst then renumbers all of the messages following the digest in the folder to make room for
each of the messages contained within the digest. These messages are placed immediately after the digest.

If ‘–noinplace’ is given, each digest is preserved, no table of contents is produced, and the messages con-
tained within the digest are placed at the end of the folder. Other messages are not tampered with in any
way.

The ‘–quiet’ switch directs burst to be silent about reporting messages that are not in digest format.

The ‘–verbose’ switch directs burst to tell the user the general actions that it is taking to explode the digest.

It turns out that burst works equally well on forwarded messages and blind–carbon–copies as on Internet
digests, provided that the former two were generated by forw or send.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder
Msg–Protect: To set mode when creating a new message

See Also

Proposed Standard for Message Encapsulation (aka RFC–934),
inc(1), msh(1), pack(1)

Defaults

‘+folder’ defaults to the current folder
‘msgs’ defaults to cur
‘–noinplace’
‘–noquiet’
‘–noverbose’

Context

If a folder is given, it will become the current folder. If ‘–inplace’ is given, then the first message burst be-
comes the current message. This leaves the context ready for a show of the table of contents of the digest,
and a next to see the first message of the digest. If ‘–noinplace’ is given, then the first message extracted
from the first digest burst becomes the current message. This leaves the context in a similar, but not identi-
cal, state to the context achieved when using ‘–inplace’.

[mh.6] MH.6.8 UCI version

BURST(1) -18- BURST(1)

Bugs

The burst program enforces a limit on the number of messages which may be burst from a single message.
This number is on the order of 1000 messages. There is usually no limit on the number of messages which
may reside in the folder after the bursting.

Although burst uses a sophisticated algorithm to determine where one encapsulated message ends and
another begins, not all digestifying programs use an encapsulation algorithm. In degenerate cases, this usu-
ally results in burst finding an encapsulation boundary prematurely and splitting a single encapsulated mes-
sage into two or more messages. These erroneous digestifying programs should be fixed.

Furthermore, any text which appears after the last encapsulated message is not placed in a seperate message
by burst. In the case of digestified messages, this text is usally an ‘‘End of digest’’ string. As a result of
this possibly un–friendly behavior on the part of burst, note that when the ‘–inplace’ option is used, this
trailing information is lost. In practice, this is not a problem since correspondents usually place remarks in
text prior to the first encapsulated message, and this information is not lost.

[mh.6] MH.6.8 UCI version

COMP(1) -19- COMP(1)

NAME

comp – compose a message

SYNOPSIS

comp [+folder] [msg] [–draftfolder +folder] [–draftmessage msg] [–nodraftfolder] [–editor editor] [–noedit]
[–file file] [–form formfile] [–use] [–nouse] [–whatnowproc program] [–nowhatnowproc] [–help]

DESCRIPTION

Comp is used to create a new message to be mailed. It copies a message form to the draft being composed
and then invokes an editor on the draft (unless ‘–noedit’ is given, in which case the initial edit is
suppressed).

The default message form contains the following elements:

To:
cc:
Subject:

If the file named ‘‘components’’ exists in the user’s MH directory, it will be used instead of this form. The
file specified by ‘–form formfile’ will be used if given. You may also start comp using the contents of an
existing message as the form. If you supply either a ‘+folder’ or ‘msg’ argument, that message will be used
as the form. You may not supply both a ‘–form formfile’ and a ‘+folder’ or ‘msg’ argument. The line of
dashes or a blank line must be left between the header and the body of the message for the message to be
identified properly when it is sent (see send (1)). The switch ‘–use’ directs comp to continue editing an
already started message. That is, if a comp (or dist, repl, or forw) is terminated without sending the draft,
the draft can be edited again via ‘‘comp –use’’.

If the draft already exists, comp will ask you as to the disposition of the draft. A reply of quit will abort
comp, leaving the draft intact; replace will replace the existing draft with the appropriate form; list will
display the draft; use will use the draft for further composition; and refile +folder will file the draft in the
given folder, and give you a new draft with the appropriate form. (The ‘+folder’ argument to refile is
required.)

The ‘–draftfolder +folder’ and ‘–draftmessage msg’ switches invoke the MH draft folder facility. This is an
advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for more
information.

The ‘–file file’ switch says to use the named file as the message draft.

The ‘–editor editor’ switch indicates the editor to use for the initial edit. Upon exiting from the editor,
comp will invoke the whatnow program. See whatnow (1) for a discussion of available options. The invo-
cation of this program can be inhibited by using the ‘–nowhatnowproc’ switch. (In truth of fact, it is the
whatnow program which starts the initial edit. Hence, ‘–nowhatnowproc’ will prevent any edit from occur-
ring.)

Files

/usr/local/lib/mh/components The message skeleton
or <mh–dir>/components Rather than the standard skeleton
$HOME/.mh_profile The user profile
<mh–dir>/draft The draft file

[mh.6] MH.6.8 UCI version

COMP(1) -20- COMP(1)

Profile Components

Path: To determine the user’s MH directory
Draft–Folder: To find the default draft–folder
Editor: To override the default editor
Msg–Protect: To set mode when creating a new message (draft)
fileproc: Program to refile the message
whatnowproc: Program to ask the ‘‘What now?’’ questions

See Also

dist(1), forw(1), repl(1), send(1), whatnow(1), mh-profile(5)

Defaults

‘+folder’ defaults to the current folder
‘msg’ defaults to the current message
‘–nodraftfolder’
‘–nouse’

Context

None

Bugs

If whatnowproc is whatnow, then comp uses a built–in whatnow, it does not actually run the whatnow pro-
gram. Hence, if you define your own whatnowproc, don’t call it whatnow since comp won’t run it.

[mh.6] MH.6.8 UCI version

DIST(1) -21- DIST(1)

NAME

dist – redistribute a message to additional addresses

SYNOPSIS

dist [+folder] [msg] [–annotate] [–noannotate] [–draftfolder +folder] [–draftmessage msg] [–nodraftfolder]
[–editor editor] [–noedit] [–form formfile] [–inplace] [–noinplace] [–whatnowproc program]
[–nowhatnowproc] [–help]

DESCRIPTION

Dist is similar to forw. It prepares the specified message for redistribution to addresses that (presumably)
are not on the original address list.

The default message form contains the following elements:

Resent-To:
Resent-cc:

If the file named ‘‘distcomps’’ exists in the user’s MH directory, it will be used instead of this form. In
either case, the file specified by ‘–form formfile’ will be used if given. The form used will be prepended to
the message being resent.

If the draft already exists, dist will ask you as to the disposition of the draft. A reply of quit will abort dist,
leaving the draft intact; replace will replace the existing draft with a blank skeleton; and list will display
the draft.

Only those addresses in ‘‘Resent–To:’’, ‘‘Resent–cc:’’, and ‘‘Resent–Bcc:’’ will be sent. Also, a
‘‘Resent–Fcc: folder’’ will be honored (see send (1)). Note that with dist, the draft should contain only
‘‘Resent–xxx:’’ fields and no body. The headers and the body of the original message are copied to the
draft when the message is sent. Use care in constructing the headers for the redistribution.

If the ‘–annotate’ switch is given, the message being distributed will be annotated with the lines:

Resent: date
Resent: addrs

where each address list contains as many lines as required. This annotation will be done only if the mes-
sage is sent directly from dist. If the message is not sent immediately from dist, ‘‘comp –use’’ may be used
to re–edit and send the constructed message, but the annotations won’t take place. The ’–inplace’ switch
causes annotation to be done in place in order to preserve links to the annotated message.

See comp (1) for a description of the ‘–editor’ and ‘–noedit’ switches. Note that while in the editor, the
message being resent is available through a link named ‘‘@’’ (assuming the default whatnowproc). In
addition, the actual pathname of the message is stored in the envariable $editalt, and the pathname of the
folder containing the message is stored in the envariable $mhfolder.

The ‘–draftfolder +folder’ and ‘–draftmessage msg’ switches invoke the MH draft folder facility. This is an
advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for more
information.

Upon exiting from the editor, dist will invoke the whatnow program. See whatnow (1) for a discussion of
available options. The invocation of this program can be inhibited by using the ‘–nowhatnowproc’ switch.

[mh.6] MH.6.8 UCI version

DIST(1) -22- DIST(1)

(In truth of fact, it is the whatnow program which starts the initial edit. Hence, ‘–nowhatnowproc’ will
prevent any edit from occurring.)

Files

/usr/local/lib/mh/distcomps The message skeleton
or <mh–dir>/distcomps Rather than the standard skeleton
$HOME/.mh_profile The user profile
<mh–dir>/draft The draft file

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder
Draft–Folder: To find the default draft–folder
Editor: To override the default editor
fileproc: Program to refile the message
whatnowproc: Program to ask the ‘‘What now?’’ questions

See Also

comp(1), forw(1), repl(1), send(1), whatnow(1)

Defaults

‘+folder’ defaults to the current folder
‘msg’ defaults to cur
‘–noannotate’
‘–nodraftfolder’
‘–noinplace’

Context

If a folder is given, it will become the current folder. The message distributed will become the current mes-
sage.

History

Dist originally used headers of the form ‘‘Distribute–xxx:’’ instead of ‘‘Resent–xxx:’’. In order to conform
with the ARPA Internet standard, RFC–822, the ‘‘Resent–xxx:’’ form is now used. Dist will recognize
‘‘Distribute–xxx:’’ type headers and automatically convert them to ‘‘Resent–xxx:’’.

Bugs

Dist does not rigorously check the message being distributed for adherence to the transport standard, but
post called by send does. The post program will balk (and rightly so) at poorly formatted messages, and
dist won’t correct things for you.

If whatnowproc is whatnow, then dist uses a built–in whatnow, it does not actually run the whatnow pro-
gram. Hence, if you define your own whatnowproc, don’t call it whatnow since dist won’t run it.

If your current working directory is not writable, the link named ‘‘@’’ is not available.

[mh.6] MH.6.8 UCI version

FOLDER(1) -23- FOLDER(1)

NAME

folder, folders – set/list current folder/message

SYNOPSIS

folder [+folder] [msg] [–all] [–create] [–nocreate] [–print] [–fast] [–nofast] [–header] [–noheader] [–recurse]
[–norecurse] [–total] [–nototal] [–list] [–nolist] [–push] [–pop] [–pack] [–nopack] [–verbose]
[–noverbose] [–help]

folders

DESCRIPTION

Since the MH environment is the shell, it is easy to lose track of the current folder from day to day. When
folder is given the ‘–print’ switch (the default), folder will list the current folder, the number of messages in
it, the range of the messages (low–high), and the current message within the folder, and will flag extra files
if they exist. An example of this summary is:

inbox+ has 16 messages (3– 22); cur= 5.

If a ‘+folder’ and/or ‘msg’ are specified, they will become the current folder and/or message. By com-
parison, when a ‘+folder’ argument is given, this corresponds to a ‘‘cd’’ operation in the shell; when no
‘+folder’ argument is given, this corresponds roughly to a ‘‘pwd’’ operation in the shell.

If the specified (or default) folder doesn’t exist, the default action is to query the user as to whether the
folder should be created; when standard input is not a tty, the answer to the query is assumed to be ‘‘yes’’.

Specifying ‘–create’ will cause folder to create new folders without any query. (This is the easy way to
create an empty folder for use later.) Specifying ‘–nocreate’ will cause folder to exit without creating a
non-existant folder.

Multiple Folders

Specifying ‘–all’ will produce a summary line for each top-level folder in the user’s MH directory, sorted
alphabetically. (If folder is invoked by a name ending with ‘‘s’’ (e.g., folders), ‘–all’ is assumed). Speci-
fying ‘–recurse’ with ‘–all’ will also produce a line for all sub-folders. These folders are all preceded by
the read–only folders, which occur as ‘‘atr–cur–’’ entries in the user’s MH context. For example,

Folder # of messages (range) cur msg (other files)
/fsd/rs/m/tacc has 35 messages (1– 35); cur= 23.
/rnd/phyl/Mail/EP has 82 messages (1–108); cur= 82.
ff has no messages.
inbox+ has 16 messages (3– 22); cur= 5.
mh has 76 messages (1– 76); cur= 70.
notes has 2 messages (1– 2); cur= 1.
ucom has 124 messages (1–124); cur= 6; (others).

TOTAL= 339 messages in 7 folders

The ‘‘+’’ after inbox indicates that it is the current folder. The ‘‘(others)’’ indicates that the folder ‘ucom’
has files which aren’t messages. These files may either be sub–folders, or files that don’t belong under the
MH file naming scheme.

The header is output if either a ‘–all’ or a ‘–header’ switch is specified; it is suppressed by ‘–noheader’. A

[mh.6] MH.6.8 UCI version

FOLDER(1) -24- FOLDER(1)

‘–total’ switch will produce only the summary line.

If ‘–fast’ is given, only the folder name (or names in the case of ‘–all’) will be listed. (This is faster
because the folders need not be read.)

If a ‘+folder’ is given along with the ‘–all’ switch, folder will, in addition to setting the current folder, list
the top–level folders for the current folder (with ‘–norecurse’) or list all sub-folders under the current folder
recursively (with ‘–recurse’). In this case, if a ‘msg’ is also supplied, it will become the current message of
‘+folder’.

The ‘–recurse’ switch lists each folder recursively, so use of this option effectively defeats the speed
enhancement of the ‘–fast’ option, since each folder must be searched for subfolders. Nevertheless, the
combination of these options is useful.

Compacting a Folder

The ‘–pack’ switch will compress the message names in the designated folders, removing holes in message
numbering. The ‘–verbose’ switch directs folder to tell the user the general actions that it is taking to
compress the folder.

The Folder Stack

The ‘–push’ switch directs folder to push the current folder onto the folder–stack, and make the ‘+folder’
argument the current folder. If ‘+folder’ is not given, the current folder and the top of the folder–stack are
exchanged. This corresponds to the ‘‘pushd’’ operation in the CShell.

The ‘–pop’ switch directs folder to discard the top of the folder–stack, after setting the current folder to that
value. No ‘+folder’ argument is allowed. This corresponds to the ‘‘popd’’ operation in the CShell. The
‘–push’ switch and the ‘–pop’ switch are mutually exclusive: the last occurrence of either one overrides any
previous occurrence of the other. Both of these switches also set ‘–list’ by default.

The ‘–list’ switch directs folder to list the contents of the folder–stack. No ‘+folder’ argument is allowed.
After a successful ‘–push’ or ‘–pop’, the ‘–list’ action is taken, unless a ‘–nolist’ switch follows them on
the command line. This corresponds to the ‘‘dirs’’ operation in the CShell. The ‘–push’, ‘–pop’, and ‘–list’
switches turn off ‘–print’.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder
Folder–Protect: To set mode when creating a new folder
Folder–Stack: To determine the folder stack

See Also

refile(1), mhpath(1)

[mh.6] MH.6.8 UCI version

FOLDER(1) -25- FOLDER(1)

Defaults

‘+folder’ defaults to the current folder
‘msg’ defaults to none
‘–nofast’
‘–noheader’
‘–nototal’
‘–nopack’
‘–norecurse’
‘–noverbose’
‘–print’ is the default if no ‘–list’, ‘–push’, or ‘–pop’ is specified
‘–list’ is the default if ‘–push’, or ‘–pop’ is specified

Context

If ‘+folder’ and/or ‘msg’ are given, they will become the current folder and/or message.

History

In previous versions of MH, the ‘–fast’ switch prevented context changes from occurring for the current
folder. This is no longer the case: if ‘+folder’ is given, then folder will always change the current folder to
that.

Bugs

‘–all’ forces ‘–header’ and ‘–total’.

There is no way to restore the default behavior (to ask the user whether to create a non-existant folder) after
‘–create’ or ‘–nocreate’ is given.

[mh.6] MH.6.8 UCI version

FORW(1) -26- FORW(1)

NAME

forw – forward messages

SYNOPSIS

forw [+folder] [msgs] [–annotate] [–noannotate] [–draftfolder +folder] [–draftmessage msg]
[–nodraftfolder] [–editor editor] [–noedit] [–filter filterfile] [–form formfile] [–format] [–noformat]
[–inplace] [–noinplace] [–whatnowproc program] [–nowhatnowproc] [–help]

forw [+folder] [msgs] [–digest list] [–issue number] [–volume number] [other switches for forw] [–help]

DESCRIPTION

Forw may be used to prepare a message containing other messages. It constructs the new message from the
components file or ‘–form formfile’ (see comp), with a body composed of the message(s) to be forwarded.
An editor is invoked as in comp, and after editing is complete, the user is prompted before the message is
sent.

The default message form contains the following elements:

To:
cc:
Subject:

If the file named ‘‘forwcomps’’ exists in the user’s MH directory, it will be used instead of this form. In
either case, the file specified by ‘–form formfile’ will be used if given.

If the draft already exists, forw will ask you as to the disposition of the draft. A reply of quit will abort
forw, leaving the draft intact; replace will replace the existing draft with a blank skeleton; and list will
display the draft.

If the ‘–annotate’ switch is given, each message being forwarded will be annotated with the lines

Forwarded: date
Forwarded: addrs

where each address list contains as many lines as required. This annotation will be done only if the mes-
sage is sent directly from forw. If the message is not sent immediately from forw, ‘‘comp –use’’ may be
used to re–edit and send the constructed message, but the annotations won’t take place. The ’–inplace’
switch causes annotation to be done in place in order to preserve links to the annotated message.

See comp (1) for a description of the ‘–editor’ and ‘–noedit’ switches.

Although forw uses the ‘–form formfile’ switch to direct it how to construct the beginning of the draft, the
‘–filter filterfile’, ‘–format’, and ‘–noformat’ switches direct forw as to how each forwarded message should
be formatted in the body of the draft. If ‘–noformat’ is specified, then each forwarded message is output
exactly as it appears. If ‘–format’ or ‘–filter filterfile’ is specified, then each forwarded message is filtered
(re–formatted) prior to being output to the body of the draft. The filter file for forw should be a standard
form file for mhl, as forw will invoke mhl to format the forwarded messages. The default message filter
(what you get with ‘–format’) is:

[mh.6] MH.6.8 UCI version

FORW(1) -27- FORW(1)

width=80,overflowtext=,overflowoffset=10
leftadjust,compress,compwidth=9
Date:formatfield="%<(nodate{text})%{text}%|%(tws{text})%>"
From:
To:
cc:
Subject:
:
body:nocomponent,overflowoffset=0,noleftadjust,nocompress

If the file named ‘‘mhl.forward’’ exists in the user’s MH directory, it will be used instead of this form. In
either case, the file specified by ‘–filter filterfile’ will be used if given. To summarize: ‘–noformat’ will
reproduce each forwarded message exactly, ‘–format’ will use mhl and a default filterfile, ‘‘mhl.forward’’,
to format each forwarded message, and ‘–filter filterfile’ will use the named filterfile to format each for-
warded message with mhl.

Each forwarded message is separated with an encapsulation delimiter and dashes in the first column of the
forwarded messages will be prepended with ‘– ’ so that when received, the message is suitable for bursting
by burst (1). This follows the Internet RFC–934 guidelines.

For users of prompter (1), by specifying prompter’s ‘-prepend’ switch in the .mh_profile file, any commen-
tary text is entered before the forwarded messages. (A major win!)

The ‘–draftfolder +folder’ and ‘–draftmessage msg’ switches invoke the MH draft folder facility. This is an
advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for more
information.

Upon exiting from the editor, forw will invoke the whatnow program. See whatnow (1) for a discussion of
available options. The invocation of this program can be inhibited by using the ‘–nowhatnowproc’ switch.
(In truth of fact, it is the whatnow program which starts the initial edit. Hence, ‘–nowhatnowproc’ will
prevent any edit from occurring.)

The ‘–digest list’, ‘–issue number’, and ‘–volume number’ switches implement a digest facility for MH.
Specifying these switches enables and/or overloads the following escapes:

Type Escape Returns Description
component digest string Argument to ‘–digest’
function cur integer Argument to ‘–volume’
function msg integer Argument to ‘–issue’

Consult the Advanced Features section of the MH User’s Manual for more information on making digests.

Files

/usr/local/lib/mh/forwcomps The message skeleton
or <mh–dir>/forwcomps Rather than the standard skeleton
/usr/local/lib/mh/digestcomps The message skeleton if ‘–digest’ is given
or <mh–dir>/digestcomps Rather than the standard skeleton
/usr/local/lib/mh/mhl.forward The message filter
or <mh–dir>/mhl.forward Rather than the standard filter
$HOME/.mh_profile The user profile
<mh–dir>/draft The draft file

[mh.6] MH.6.8 UCI version

FORW(1) -28- FORW(1)

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder
Draft–Folder: To find the default draft–folder
Editor: To override the default editor
Msg–Protect: To set mode when creating a new message (draft)
fileproc: Program to refile the message
mhlproc: Program to filter messages being forwarded
whatnowproc: Program to ask the ‘‘What now?’’ questions

See Also

Proposed Standard for Message Encapsulation (aka RFC–934),
comp(1), dist(1), repl(1), send(1), whatnow(1), mh–format(5)

Defaults

‘+folder’ defaults to the current folder
‘msgs’ defaults to cur
‘–noannotate’
‘–nodraftfolder’
‘–noformat’
‘–noinplace’

Context

If a folder is given, it will become the current folder. The first message forwarded will become the current
message.

Bugs

If whatnowproc is whatnow, then forw uses a built–in whatnow, it does not actually run the whatnow pro-
gram. Hence, if you define your own whatnowproc, don’t call it whatnow since forw won’t run it.

When forw is told to annotate the messages it forwards, it doesn’t actually annotate them until the draft is
successfully sent. If from the whatnowproc, you push instead of send, it’s possible to confuse forw by
re–ordering the file (e.g., by using ‘folder –pack’) before the message is successfully sent. Dist and repl
don’t have this problem.

To avoid prepending the leading dash characters in forwarded messages, there is a ‘–nodashmunging’ op-
tion. See the ‘‘Hidden Features’’ section of the MH Administrator’s Guide for more details.

[mh.6] MH.6.8 UCI version

INC(1) -29- INC(1)

NAME

inc – incorporate new mail

SYNOPSIS

inc [+folder] [–audit audit–file] [–noaudit] [–changecur] [–nochangecur] [–form formatfile] [–format string]
[–file name] [–silent] [–nosilent] [–truncate] [–notruncate] [–width columns] [–help]

DESCRIPTION

Inc incorporates mail from the user’s incoming mail drop into an MH folder. If ‘+folder’ isn’t specified, a
folder in the user’s MH directory will be used, either that specified by the ‘‘Inbox:’’ entry in the user’s
profile, or the folder named ‘‘inbox’’. The new messages being incorporated are assigned numbers starting
with the next highest number in the folder. If the specified (or default) folder doesn’t exist, the user will be
queried prior to its creation. As the messages are processed, a scan listing of the new mail is produced.

If the user’s profile contains a ‘‘Msg–Protect: nnn’’ entry, it will be used as the protection on the newly
created messages, otherwise the MH default of 0644 will be used. During all operations on messages, this
initially assigned protection will be preserved for each message, so chmod(1) may be used to set a protec-
tion on an individual message, and its protection will be preserved thereafter.

If the switch ‘–audit audit–file’ is specified (usually as a default switch in the profile), then inc will append
a header line and a line per message to the end of the specified audit–file with the format:

<<inc>> date
<scan line for first message>
<scan line for second message>

<etc.>

This is useful for keeping track of volume and source of incoming mail. Eventually, repl, forw, comp, and
dist may also produce audits to this (or another) file, perhaps with ‘‘Message–Id:’’ information to keep an
exact correspondence history. ‘‘Audit–file’’ will be in the user’s MH directory unless a full path is
specified.

Inc will incorporate even improperly formatted messages into the user’s MH folder, inserting a blank line
prior to the offending component and printing a comment identifying the bad message.

In all cases, the user’s mail drop will be zeroed, unless the ‘–notruncate’ switch is given.

If the profile entry ‘‘Unseen–Sequence’’ is present and non–empty, then inc will add each of the newly
incorporated messages to each sequence named by the profile entry. This is similar to the
‘‘Previous–Sequence’’ profile entry supported by all MH commands which take ‘msgs’ or ‘msg’ argu-
ments. Note that inc will not zero each sequence prior to adding messages.

The interpretation of the ‘–form formatfile’, ‘–format string’, and ‘–width columns’ switches is the same as
in scan (1).

By using the ‘–file name’ switch, one can direct inc to incorporate messages from a file other than the user’s
maildrop. Note that the name file will NOT be zeroed, unless the ‘–truncate’ switch is given.

If the envariable $MAILDROP is set, then inc uses it as the location of the user’s maildrop instead of the
default (the ‘-file name’ switch still overrides this, however). If this envariable is not set, then inc will con-
sult the profile entry ‘‘MailDrop’’ for this information. If the value found is not absolute, then it is

[mh.6] MH.6.8 UCI version

INC(1) -30- INC(1)

interpreted relative to the user’s MH directory. If the value is not found, then inc will look in the standard
system location for the user’s maildrop.

The ‘–silent’ switch directs inc to be quiet and not ask any questions at all. This is useful for putting inc in
the background and going on to other things.

Files

$HOME/.mh_profile The user profile
/usr/local/lib/mh/mtstailor tailor file
/usr/spool/mail/$USER Location of mail drop

Profile Components

Path: To determine the user’s MH directory
Alternate–Mailboxes: To determine the user’s mailboxes
Inbox: To determine the inbox, default ‘‘inbox’’
Folder–Protect: To set mode when creating a new folder
Msg–Protect: To set mode when creating a new message and audit–file
Unseen–Sequence: To name sequences denoting unseen messages

See Also

mhmail(1), scan(1), mh–mail(5), post(8)

Defaults

‘+folder’ defaulted by ‘‘Inbox’’ above
‘–noaudit’
‘–changecur’
‘–format’ defaulted as described above
‘–nosilent’
‘–truncate’ if ‘–file name’ not given, ‘–notruncate’ otherwise
‘–width’ defaulted to the width of the terminal

Context

The folder into which messages are being incorporated will become the current folder. The first message
incorporated will become the current message, unless the ‘–nochangecur’ option is specified. This leaves
the context ready for a show of the first new message.

Bugs

The argument to the ‘–format’ switch must be interpreted as a single token by the shell that invokes inc.
Therefore, one must usually place the argument to this switch inside double–quotes.

[mh.6] MH.6.8 UCI version

MARK(1) -31- MARK(1)

NAME

mark – mark messages

SYNOPSIS

mark [+folder] [msgs] [–sequence name ...] [–add] [–delete] [–list] [–public] [–nopublic] [–zero] [–nozero]
[–help]

DESCRIPTION

The mark command manipulates message sequences by adding or deleting message numbers from
folder–specific message sequences, or by listing those sequences and messages. A message sequence is a
keyword, just like one of the ‘‘reserved’’ message names, such as ‘‘first’’ or ‘‘next’’. Unlike the
‘‘reserved’’ message names, which have a fixed semantics on a per–folder basis, the semantics of a mes-
sage sequence may be defined, modified, and removed by the user. Message sequences are folder–specific,
e.g., the sequence name ‘‘seen’’ in the context of folder ‘‘+inbox’’ need not have any relation whatsoever
to the sequence of the same name in a folder of a different name.

Three action switches direct the operation of mark. These switches are mutually exclusive: the last
occurrence of any of them overrides any previous occurrence of the other two.

The ‘–add’ switch tells mark to add messages to sequences or to create a new sequence. For each sequence
named via the ‘–sequence name’ argument (which must occur at least once) the messages named via ‘msgs’
(which defaults to ‘‘cur’’ if no ‘msgs’ are given), are added to the sequence. The messages to be added
need not be absent from the sequence. If the ‘–zero’ switch is specified, the sequence will be emptied prior
to adding the messages. Hence, ‘–add –zero’ means that each sequence should be initialized to the indi-
cated messages, while ‘–add –nozero’ means that each sequence should be appended to by the indicated
messages.

The ‘–delete’ switch tells mark to delete messages from sequences, and is the dual of ‘–add’. For each of
the named sequences, the named messages are removed from the sequence. These messages need not be
already present in the sequence. If the ‘–zero’ switch is specified, then all messages in the folder are
appended to the sequence prior to removing the messages. Hence, ‘–delete –zero’ means that each
sequence should contain all messages except those indicated, while ‘–delete –nozero’ means that only the
indicated messages should be removed from each sequence. As expected, the command
‘mark –sequence seen –delete all’ deletes the sequence ‘‘seen’’ from the current folder.

When creating (or modifying) a sequence, the ‘–public’ switch indicates that the sequence should be made
readable for other MH users. In contrast, the ‘–nopublic’ switch indicates that the sequence should be
private to the user’s MH environment.

The ‘–list’ switch tells mark to list both the sequences defined for the folder and the messages associated
with those sequences. Mark will list the name of each sequence given by ‘–sequence name’ and the mes-
sages associated with that sequence. If ‘–sequence’ isn’t used, all sequences will be listed, with private
sequences being so indicated. The ‘–zero’ switch does not affect the operation of ‘–list’.

The current restrictions on sequences are:

The name used to denote a message sequence must consist of an alphabetic character followed by zero
or more alphanumeric characters, and cannot be one of the (reserved) message names ‘‘new’’, ‘‘first’’,
‘‘last’’, ‘‘all’’, ‘‘next’’, or ‘‘prev’’.

Only a certain number of sequences may be defined for a given folder. This number is usually limited

[mh.6] MH.6.8 UCI version

MARK(1) -32- MARK(1)

to 26 (10 on small systems).

Message ranges with user–defined sequence names are restricted to the form ‘‘name:n’’ or ‘‘name:-n’’,
and refer to the first or last ‘n’ messages of the sequence ‘name’, respectively. Constructs of the form
‘‘name1–name2’’ are forbidden.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder

See Also

pick (1), mh-sequence (5)

Defaults

‘+folder’ defaults to the current folder
‘–add’ if ‘–sequence’ is specified, ‘–list’ otherwise
‘msgs’ defaults to cur (or all if ‘–list’ is specified)
‘–nopublic’ if the folder is read–only, ‘–public’ otherwise
‘–nozero’

Context

If a folder is given, it will become the current folder.

Helpful Hints

Use ‘‘pick sequence –list’’ to enumerate the messages in a sequence (such as for use by a shell script).

[mh.6] MH.6.8 UCI version

MHL(1) -33- MHL(1)

NAME

mhl – produce formatted listings of MH messages

SYNOPSIS

/usr/local/lib/mh/mhl [–bell] [–nobell] [–clear] [–noclear] [–folder +folder] [–form formfile] [–length lines]
[–width columns] [–moreproc program] [–nomoreproc] [files ...] [–help]

DESCRIPTION

Mhl is a formatted message listing program. It can be used as a replacement for more (1) (the default
showproc). As with more, each of the messages specified as arguments (or the standard input) will be out-
put. If more than one message file is specified, the user will be prompted prior to each one, and a
<RETURN> or <EOT> will begin the output, with <RETURN> clearing the screen (if appropriate), and
<EOT> (usually CTRL–D) suppressing the screen clear. An <INTERRUPT> (usually CTRL–C) will abort
the current message output, prompting for the next message (if there is one), and a <QUIT> (usually
CTRL-\) will terminate the program (without core dump).

The ‘–bell’ option tells mhl to ring the terminal’s bell at the end of each page, while the ‘–clear’ option tells
mhl to clear the scree at the end of each page (or output a formfeed after each message). Both of these
switches (and their inverse counterparts) take effect only if the profile entry moreproc is defined but empty,
and mhl is outputting to a terminal. If the moreproc entry is defined and non-empty, and mhl is outputting
to a terminal, then mhl will cause the moreproc to be placed between the terminal and mhl and the switches
are ignored. Furthermore, if the ‘–clear’ switch is used and mhl’s output is directed to a terminal, then mhl
will consult the $TERM and $TERMCAP envariables to determine the user’s terminal type in order to
find out how to clear the screen. If the ‘–clear’ switch is used and mhl’s output is not directed to a terminal
(e.g., a pipe or a file), then mhl will send a formfeed after each message.

To override the default moreproc and the profile entry, use the ‘–moreproc program’ switch. Note that mhl
will never start a moreproc if invoked on a hardcopy terminal.

The ‘–length length’ and ‘–width width’ switches set the screen length and width, respectively. These
default to the values indicated by $TERMCAP, if appropriate, otherwise they default to 40 and 80, respec-
tively.

The default format file used by mhl is called mhl.format (which is first searched for in the user’s MH direc-
tory, and then sought in the /usr/local/lib/mh directory), this can be changed by using the ‘–form formatfile’
switch.

Finally, the ‘–folder +folder’ switch sets the MH folder name, which is used for the ‘‘messagename:’’ field
described below. The envariable $mhfolder is consulted for the default value, which show, next, and prev
initialize appropriately.

Mhl operates in two phases: 1) read and parse the format file, and 2) process each message (file). During
phase 1, an internal description of the format is produced as a structured list. In phase 2, this list is walked
for each message, outputting message information under the format constraints from the format file.

The ‘‘mhl.format’’ form file contains information controlling screen clearing, screen size, wrap–around
control, transparent text, component ordering, and component formatting. Also, a list of components to
ignore may be specified, and a couple of ‘‘special’’ components are defined to provide added functionality.
Message output will be in the order specified by the order in the format file.

Each line of mhl.format has one of the formats:

[mh.6] MH.6.8 UCI version

MHL(1) -34- MHL(1)

;comment
:cleartext
variable[,variable...]
component:[variable,...]

A line beginning with a ‘;’ is a comment, and is ignored. A line beginning with a ‘:’ is clear text, and is
output exactly as is. A line containing only a ‘:’ produces a blank line in the output. A line beginning with
‘‘component:’’ defines the format for the specified component, and finally, remaining lines define the glo-
bal environment.

For example, the line:

width=80,length=40,clearscreen,overflowtext="***",overflowoffset=5

defines the screen size to be 80 columns by 40 rows, specifies that the screen should be cleared prior to each
page, that the overflow indentation is 5, and that overflow text should be flagged with ‘‘***’’.

Following are all of the current variables and their arguments. If they follow a component, they apply only
to that component, otherwise, their affect is global. Since the whole format is parsed before any output pro-
cessing, the last global switch setting for a variable applies to the whole message if that variable is used in a
global context (i.e., bell, clearscreen, width, length).

variable type semantics
width integer screen width or component width
length integer screen length or component length
offset integer positions to indent ‘‘component: ’’
overflowtext string text to use at the beginning of an

overflow line
overflowoffset integer positions to indent overflow lines
compwidth integer positions to indent component text

after the first line is output
uppercase flag output text of this component in all

upper case
nouppercase flag don’t uppercase
clearscreen flag/G clear the screen prior to each page
noclearscreen flag/G don’t clearscreen
bell flag/G ring the bell at the end of each page
nobell flag/G don’t bell
component string/L name to use instead of ‘‘component’’ for

this component
nocomponent flag don’t output ‘‘component: ’’ for this

component
center flag center component on line (works for

one–line components only)
nocenter flag don’t center
leftadjust flag strip off leading whitespace on each

line of text
noleftadjust flag don’t leftadjust
compress flag change newlines in text to spaces
nocompress flag don’t compress
split flag don’t combine multiple fields into a single field
nosplit flag combine multiple fields into a single field

[mh.6] MH.6.8 UCI version

MHL(1) -35- MHL(1)

newline flag print newline at end of components (default)
nonewline flag don’t print newline at end of components
formatfield string format string for this component (see below)
addrfield flag field contains addresses
datefield flag field contains dates

To specify the value of integer–valued and string–valued variables, follow their name with an equals–sign
and the value. Integer–valued variables are given decimal values, while string–valued variables are given
arbitrary text bracketed by double–quotes. If a value is suffixed by ‘‘/G’’ or ‘‘/L’’, then its value is useful
in a global–only or local–only context (respectively).

A line of the form:

ignores=component,...

specifies a list of components which are never output.

The component ‘‘MessageName’’ (case–insensitive) will output the actual message name (file name) pre-
ceded by the folder name if one is specified or found in the environment. The format is identical to that
produced by the ‘–header’ option to show.

The component ‘‘Extras’’ will output all of the components of the message which were not matched by
explicit components, or included in the ignore list. If this component is not specified, an ignore list is not
needed since all non–specified components will be ignored.

If ‘‘nocomponent’’ is NOT specified, then the component name will be output as it appears in the format
file.

The default format is:

: -- using template mhl.format --
overflowtext="***",overflowoffset=5
leftadjust,compwidth=9
ignores=msgid,message-id,received
Date:formatfield="%<(nodate{text})%{text}%|%(pretty{text})%>"
To:
cc:
:
From:
Subject:
:
extras:nocomponent
:
body:nocomponent,overflowtext=,overflowoffset=0,noleftadjust

The variable ‘‘formatfield’’ specifies a format string (see mh–format (5)). The flag variables ‘‘addrfield’’
and ‘‘datefield’’ (which are mutually exclusive), tell mhl to interpret the escapes in the format string as
either addresses or dates, respectively.

By default, mhl does not apply any formatting string to fields containing address or dates (see mh–mail (5)
for a list of these fields). Note that this results in faster operation since mhl must parse both addresses and
dates in order to apply a format string to them. If desired, mhl can be given a default format string for

[mh.6] MH.6.8 UCI version

MHL(1) -36- MHL(1)

either address or date fields (but not both). To do this, on a global line specify: either the flag addrfield or
datefield, along with the apropriate formatfield variable string.

Files

/usr/local/lib/mh/mhl.format The message template
or <mh–dir>/mhl.format Rather than the standard template
$HOME/.mh_profile The user profile

Profile Components

moreproc: Program to use as interactive front–end

See Also

show(1), ap(8), dp(8)

Defaults

‘–bell’
‘–noclear’
‘–length 40’
‘–width 80’

Context

None

Bugs

There should be some way to pass ‘bell’ and ‘clear’ information to the front–end.

On hosts where MH was configured with the BERK option, address parsing is not enabled.

The ‘‘nonewline’’ option interacts badly with ‘‘compress’’ and ‘‘split’’.

[mh.6] MH.6.8 UCI version

MHMAIL(1) -37- MHMAIL(1)

NAME

mhmail – send or read mail

SYNOPSIS

mhmail [addrs ... [–body text] [–cc addrs ...] [–from addr] [–subject subject]] [–help]

DESCRIPTION

MHmail is intended as a replacement for the standard Bell mail program (bellmail (1)), compatible with
MH. When invoked without arguments, it simply invokes inc (1) to incorporate new messages from the
user’s maildrop. When one or more users is specified, a message is read from the standard input and
spooled to a temporary file. MHmail then invokes post (8) with the name of the temporary file as its argu-
ment to deliver the message to the specified user.

The ‘–subject subject’ switch can be used to specify the ‘‘Subject:’’ field of the message. The ‘–body text’
switch can be used to specify the text of the message; if it is specified, then the standard input is not read.
Normally, addresses appearing as arguments are put in the ‘‘To:’’ field. If the ‘–cc’ switch is used, all
addresses following it are placed in the ‘‘cc:’’ field.

By using ‘–from addr’, you can specify the ‘‘From:’’ header of the draft. Naturally, post will fill–in the
‘‘Sender:’’ header correctly.

This program is intended for the use of programs such as at (1), which expect to send mail automatically to
various users. Normally, real people (as opposed to the ‘‘unreal’’ ones) will prefer to use comp (1) and
send (1) to send messages.

Files

/usr/local/inc Program to incorporate a maildrop into a folder
/usr/local/lib/mh/post Program to deliver a message
/tmp/mhmail* Temporary copy of message

Profile Components

None

See Also

inc(1), post(8)

Defaults

None

Context

If inc is invoked, then inc’s context changes occur.

[mh.6] MH.6.8 UCI version

MHOOK(1) -38- MHOOK(1)

NAME

mhook, rcvdist, rcvpack, rcvtty – MH receive-mail hooks

SYNOPSIS

/usr/local/lib/mh/rcvdist [–form formfile] [switches for postproc] address ... [–help]

/usr/local/lib/mh/rcvpack file [–help]

/usr/local/lib/mh/rcvtty [command] [–form formatfile] [–format string] [–bell] [–nobell] [–newline]
[–nonewline] [–biff] [–help]

DESCRIPTION

A receive–mail hook is a program that is run whenever you receive a mail message. You do NOT invoke
the hook yourself, rather the hook is invoked on your behalf by your system’s Message Transport Agent.
See slocal (1) for details on how to activate receive–mail hooks on your system.

Four programs are currently available as part of MH, rcvdist (redistribute incoming messages to additional
recipients), rcvpack (save incoming messages in a packf’d file), and rcvtty (notify user of incoming mes-
sages). The fourth program, rcvstore (1) is described separately. They all reside in the /usr/local/lib/mh/
directory.

The rcvdist program will resend a copy of the message to all of the addresses listed on its command line. It
uses the format string facility described in mh–format (5).

The rcvpack program will append a copy of the message to the file listed on its command line. Its use is
obsoleted by the ‘‘file’’ action of slocal.

The rcvtty program executes the named file with the message as its standard input, and writes the resulting
output on your terminal.

If no file is specified, or is bogus, etc., then rcvtty will instead write a one–line scan listing. Either the
‘–form formatfile’ or ‘–format string’ option may be used to override the default output format (see
mh–format (5)). A newline is output before the message output, and the terminal bell is rung after the out-
put. The ‘–nonewline’ and ‘–nobell’ options will inhibit these functions.

In addition to the standard mh–format (5) escapes, rcvtty also recognizes the following additional com-
ponent escapes:

Escape Returns Description
body string the (compressed) first part of the body
dtimenow date the current date
folder string the name of the current folder

Normally, rcvtty obeys write permission as granted by mesg (1). With the ‘–biff’ option, rcvtty will obey
the notification status set by biff (1) instead. If the terminal access daemon (TTYD) is available on your
system, then rcvtty will give its output to the daemon for output instead of writing on the user’s terminal.

Files

/usr/local/lib/mh/mtstailor tailor file
$HOME/.maildelivery The file controlling local delivery
/usr/local/lib/mh/maildelivery Rather than the standard file

[mh.6] MH.6.8 UCI version

MHOOK(1) -39- MHOOK(1)

See Also

rcvstore (1), mh–format(5), slocal(1)

Bugs

Only two return codes are meaningful, others should be.

[mh.6] MH.6.8 UCI version

MHPARAM(1) -40- MHPARAM(1)

NAME

mhparam – print MH profile components

SYNOPSIS

mhparam [components] [-all] [-component] [-nocomponent] [–help]

DESCRIPTION

Mhparam writes the value of the specified profile component to the standard output separated by newlines.
If the profile component is not present, the default value (or nothing if there is no default) is printed.

If more than one component is specified in the ‘components’ list, the component value is preceded by the
component name. If ‘–component’ is specified, the component name is displayed even when only one
component is specified. If ‘–nocomponent’ is specified, the component name is not displayed even when
more than one component is specified.

If ‘–all’ is specified, all components if the MH profile are displayed and other arguments are ignored.

Examples:

% mhparam path
Mail

% mhparam mhlproc
/usr/local/lib/mh/mhl

% mhparam –component path
Path: Mail

% mhparam AliasFile rmmproc
AliasFile: aliases
rmmproc: rmmproc

% mhparam –nocomponent AliasFile rmmproc
aliases
rmmproc

Mhparam is also useful in back–quoted operations:

% fgrep cornell.edu ‘mhpath +‘/‘mhparam aliasfile‘

Files

$HOME/.mh_profile The user profile

See Also

mh-profileO(5)

Defaults

‘–nocomponent’ if only one component is specified
‘–component’ if more than one component is specified
‘components’ defaults to none

[mh.6] MH.6.8 UCI version

MHPARAM(1) -41- MHPARAM(1)

Context

None

[mh.6] MH.6.8 UCI version

MHPATH(1) -42- MHPATH(1)

NAME

mhpath – print full pathnames of MH messages and folders

SYNOPSIS

mhpath [+folder] [msgs] [–help]

DESCRIPTION

Mhpath expands and sorts the message list ‘msgs’ and writes the full pathnames of the messages to the
standard output separated by newlines. If no ‘msgs’ are specified, mhpath outputs the folder pathname
instead. If the only argument is ‘+’, your MH Path is output; this can be useful is shell scripts.

Contrasted with other MH commands, a message argument to mhpath may often be intended for writing.
Because of this:

1) the name ‘‘new’’ has been added to mhpath’s list of reserved message names (the others are ‘‘first’’,
‘‘last’’, ‘‘prev’’, ‘‘next’’, ‘‘cur’’, and ‘‘all’’). The new message is equivalent to the message after the last
message in a folder (and equivalent to 1 in a folder without messages). The ‘‘new’’ message may not be
used as part of a message range.

2) Within a message list, the following designations may refer to messages that do not exist: a single
numeric message name, the single message name ‘‘cur’’, and (obviously) the single message name ‘‘new’’.
All other message designations must refer to at least one existing message.

3) An empty folder is not in itself an error.

Message numbers greater than the highest existing message in a folder as part of a range designation are
replaced with the next free message number.

Examples: The current folder foo contains messages 3 5 6. Cur is 4.

% mhpath
/r/phyl/Mail/foo

% mhpath all
/r/phyl/Mail/foo/3
/r/phyl/Mail/foo/5
/r/phyl/Mail/foo/6

% mhpath 2001
/r/phyl/Mail/foo/7

% mhpath 1–2001
/r/phyl/Mail/foo/3
/r/phyl/Mail/foo/5
/r/phyl/Mail/foo/6

% mhpath new
/r/phyl/Mail/foo/7

% mhpath last new
/r/phyl/Mail/foo/6

[mh.6] MH.6.8 UCI version

MHPATH(1) -43- MHPATH(1)

/r/phyl/Mail/foo/7

% mhpath last–new
bad message list ‘‘last–new’’.

% mhpath cur
/r/phyl/Mail/foo/4

% mhpath 1–2
no messages in range ‘‘1–2’’.

% mhpath first:2
/r/phyl/Mail/foo/3
/r/phyl/Mail/foo/5

% mhpath 1 2
/r/phyl/Mail/foo/1
/r/phyl/Mail/foo/2

MHpath is also useful in back–quoted operations:

% cd ‘mhpath +inbox‘

% echo ‘mhpath +‘
/r/phyl/Mail

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder

See Also

folder(1)

Defaults

‘+folder’ defaults to the current folder
‘msgs’ defaults to none

Context

None

[mh.6] MH.6.8 UCI version

MHPATH(1) -44- MHPATH(1)

Bugs

Like all MH commands, mhpath expands and sorts [msgs]. So don’t expect

mv ‘mhpath 501 500‘

to move 501 to 500. Quite the reverse. But

mv ‘mhpath 501‘ ‘mhpath 500‘

will do the trick.

Out of range message 0 is treated far more severely than large out of range message numbers.

[mh.6] MH.6.8 UCI version

MSGCHK(1) -45- MSGCHK(1)

NAME

msgchk – check for messages

SYNOPSIS

msgchk [–date] [–nodate] [–notify all/mail/nomail] [–nonotify all/mail/nomail] [users ...] [–help]

DESCRIPTION

The msgchk program checks all known mail drops for mail waiting for you. For those drops which have
mail for you, msgchk will indicate if it believes that you have seen the mail in question before.

The ‘–notify type’ switch indicates under what circumstances msgchk should produce a message. The
default is ‘–notify all’ which says that msgchk should always report the status of the users maildrop. Other
values for ‘type’ include ‘mail’ which says that msgchk should report the status of waiting mail; and,
‘nomail’ which says that msgchk should report the status of empty maildrops. The ‘–nonotify type’ switch
has the inverted sense, so ‘–nonotify all’ directs msgchk to never report the status of maildrops. This is use-
ful if the user wishes to check msgchk’s exit status. A non–zero exit status indicates that mail was not wait-
ing for at least one of the indicated users.

If msgchk produces output, then the ‘–date’ switch directs msgchk to print out the last date mail was read, if
this can be determined.

Files

$HOME/.mh_profile The user profile
/usr/local/lib/mh/mtstailor tailor file
/usr/spool/mail/$USER Location of mail drop

Profile Components

None

See Also

inc(1)

Defaults

‘user’ defaults to the current user
‘–date’
‘–notify all’

Context

None

[mh.6] MH.6.8 UCI version

MSH(1) -46- MSH(1)

NAME

msh – MH shell (and BBoard reader)

SYNOPSIS

msh [–prompt string] [–scan] [–noscan] [–topcur] [–notopcur] [file] [–help]

DESCRIPTION

msh is an interactive program that implements a subset of the normal MH commands operating on a single
file in packf’d format. That is, msh is used to read a file that contains a number of messages, as opposed to
the standard MH style of reading a number of files, each file being a separate message in a folder. msh’s
chief advantage is that the normal MH style does not allow a file to have more than one message in it.
Hence, msh is ideal for reading BBoards, as these files are delivered by the transport system in this format.
In addition, msh can be used on other files, such as message archives which have been packed (see
packf (1)). Finally, msh is an excellent MH tutor. As the only commands available to the user are MH
commands, this allows MH beginners to concentrate on how commands to MH are formed and (more or
less) what they mean.

When invoked, msh reads the named file, and enters a command loop. The user may type most of the nor-
mal MH commands. The syntax and semantics of these commands typed to msh are identical to their MH
counterparts. In cases where the nature of msh would be inconsistent (e.g., specifying a ‘+folder’ with
some commands), msh will duly inform the user. The commands that msh currently supports (in some
slightly modified or restricted forms) are:

ali
burst
comp
dist
folder
forw
inc
mark
mhmail
msgchk
next
packf
pick
prev
refile
repl
rmm
scan
send
show
sortm
whatnow
whom

In addition, msh has a ‘‘help’’ command which gives a brief overview. To terminate msh, type CTRL–D,
or use the ‘‘quit’’ command. If msh is being invoked from bbc, then typing CTRL–D will also tell bbc to
exit as well, while using the ‘‘quit’’ command will return control to bbc, and bbc will continue examining
the list of BBoards that it is scanning.

[mh.6] MH.6.8 UCI version

MSH(1) -47- MSH(1)

If the file is writable and has been modified, then using ‘‘quit’’ will query the user if the file should be
updated.

The ‘–prompt string’ switch sets the prompting string for msh.

You may wish to use an alternate MH profile for the commands that msh executes; see mh-profile (5) for
details about the $MH envariable.

When invoked from bbc, two special features are enabled: First, the ‘–scan’ switch directs msh to do a
‘scan unseen’ on start–up if new items are present in the BBoard. This feature is best used from bbc,
which correctly sets the stage. Second, the mark command in msh acts specially when you are reading a
BBoard, since msh will consult the sequence ‘‘unseen’’ in determining what messages you have actually
read. When msh exits, it reports this information to bbc. In addition, if you give the mark command with
no arguments, msh will interpret it as ‘mark –sequence unseen –delete –nozero all’ Hence, to discard all
of the messages in the current BBoard you’re reading, just use the mark command with no arguments.

Normally, the ‘‘exit’’ command is identical to the ‘‘quit’’ command in msh. When run under bbc however,
‘‘exit’’ directs msh to mark all messages as seen and then ‘‘quit’’. For speedy type–in, this command is
often abbreviated as just ‘‘e’’.

When invoked from vmh, another special feature is enabled: The ‘topcur’ switch directs msh to have the
current message ‘‘track’’ the top line of the vmh scan window. Normally, msh has the current message
‘‘track’’ the center of the window (under ‘–notopcur’, which is the default).

msh supports an output redirection facility. Commands may be followed by one of

> file write output to file
>> file append output to file
| command pipe output to UNIX command

If file starts with a ‘˜’ (tilde), then a csh-like expansion takes place. Note that command is interpreted by
sh (1). Also note that msh does NOT support history substitutions, variable substitutions, or alias substitu-
tions.

When parsing commands to the left of any redirection symbol, msh will honor ‘\’ (back–slash) as the quote
next–character symbol, and ‘"’ (double–quote) as quote–word delimiters. All other input tokens are
separated by whitespace (spaces and tabs).

Files

$HOME/.mh_profile The user profile
/usr/local/lib/mh/mtstailor tailor file

Profile Components

Path: To determine the user’s MH directory
Msg–Protect: To set mode when creating a new ‘file’
fileproc: Program to file messages
showproc: Program to show messages

See Also

bbc(1)

[mh.6] MH.6.8 UCI version

MSH(1) -48- MSH(1)

Defaults

‘file’ defaults to ‘‘./msgbox’’
‘–prompt (msh) ’
‘–noscan’
‘–notopcur’

Context

None

Bugs

The argument to the ‘–prompt’ switch must be interpreted as a single token by the shell that invokes msh.
Therefore, one must usually place the argument to this switch inside double–quotes.

There is a strict limit of messages per file in packf’d format which msh can handle. Usually, this limit is
1000 messages.

Please remember that msh is not the CShell, and that a lot of the nice facilities provided by the latter are not
present in the former.

In particular, msh does not understand back–quoting, so the only effective way to use pick inside msh is to
always use the ‘–seq select’ switch. Clever users of MH will put the line

pick: –seq select –list

in their .mh_profile file so that pick works equally well from both the shell and msh.

sortm always uses ‘‘–noverbose’’ and if ‘‘–textfield field‘‘ is used, ‘‘–limit 0’’.

The msh program inherits most (if not all) of the bugs from the MH commands it implements.

[mh.6] MH.6.8 UCI version

NEXT(1) -49- NEXT(1)

NAME

next – show the next message

SYNOPSIS

next [+folder] [–header] [–noheader] [–showproc program] [–noshowproc] [switches for showproc] [–help]

DESCRIPTION

Next performs a show on the next message in the specified (or current) folder. Like show, it passes any
switches on to the program showproc, which is called to list the message. This command is almost exactly
equivalent to ‘‘show next’’. Consult the manual entry for show (1) for all the details.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder
showproc: Program to show the message

See Also

show(1), prev(1)

Defaults

‘+folder’ defaults to the current folder
‘–header’

Context

If a folder is specified, it will become the current folder. The message that is shown (i.e., the next message
in sequence) will become the current message.

Bugs

next is really a link to the show program. As a result, if you make a link to next and that link is not called
next, your link will act like show instead. To circumvent this, add a profile–entry for the link to your MH
profile and add the argument next to the entry.

[mh.6] MH.6.8 UCI version

PACKF(1) -50- PACKF(1)

NAME

packf – compress an MH folder into a single file

SYNOPSIS

packf [+folder] [msgs] [–file name] [–help]

DESCRIPTION

Packf takes messages from a folder and copies them to a single file. Each message in the file is separated
by four CTRL–A’s and a newline. Messages packed can be unpacked using inc.

If the name given to the ‘–file name’ switch exists, then the messages specified will be appended to the end
of the file, otherwise the file will be created and the messages appended.

Files

$HOME/.mh_profile The user profile
.msgbox.map A binary index of the file

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder
Msg–Protect: To set mode when creating a new ‘file’

See Also

inc(1)

Defaults

‘+folder’ defaults to the current folder
‘msgs’ defaults to all
‘–file ./msgbox’

Context

If a folder is given, it will become the current folder. The first message packed will become the current
message.

Bugs

Packf doesn’t handle the old UUCP-style ‘‘mbox’’ format (used by SendMail). To pack messages into this
format, use the script /usr/local/lib/mh/packmbox. Note that packmbox does not take the ‘–file’ option of
packf, and instead writes its output on stdout.

[mh.6] MH.6.8 UCI version

PICK(1) -51- PICK(1)

NAME

pick – select messages by content

SYNOPSIS

pick –cc [+folder] [msgs] [–help]
–date [–before date] [–after date] [–datefield field]
–from

B
A
A
C
A
A
D

–search

E
A
A
F
A
A
G

pattern [–and ...] [–or ...] [–not ...] [–lbrace ... –rbrace]
–subject
–to [–sequence name ...] [–public] [–nopublic] [–zero] [–nozero]
–O–component [–list] [–nolist]

typically:
scan ‘pick –from jones‘
pick –to holloway –sequence select
show ‘pick –before friday‘

DESCRIPTION

Pick searches messages within a folder for the specified contents, and then identifies those messages. Two
types of search primitives are available: pattern matching and date constraint operations.

A modified grep(1) is used to perform the matching, so the full regular expression (see ed(1)) facility is
available within ‘pattern’. With ‘–search’, ‘pattern’ is used directly, and with the others, the grep pattern
constructed is:

‘‘component[\t]*:.*pattern’’

This means that the pattern specified for a ‘–search’ will be found everywhere in the message, including the
header and the body, while the other pattern matching requests are limited to the single specified com-
ponent. The expression

‘–O–component pattern’

is a shorthand for specifying

‘–search ‘‘component[\t]*:.*pattern’’ ’

It is used to pick a component which is not one of ‘‘To:’’, ‘‘cc:’’, ‘‘Date:’’, ‘‘From:’’, or ‘‘Subject:’’. An
example is ‘pick –O–reply–to pooh’.

Pattern matching is performed on a per–line basis. Within the header of the message, each component is
treated as one long line, but in the body, each line is separate. Lower–case letters in the search pattern will
match either lower or upper case in the message, while upper case will match only upper case.

Note that since the ‘–date’ switch is a pattern matching operation (as described above), to find messages
sent on a certain date the pattern string must match the text of the ‘‘Date:’’ field of the message.

Independent of any pattern matching operations requested, the switches ‘–after date’ or ‘–before date’ may
also be used to introduce date/time contraints on all of the messages. By default, the ‘‘Date:’’ field is con-
sulted, but if another date yielding field (such as ‘‘BB–Posted:’’ or ‘‘Delivery–Date:’’) should be used, the
‘–datefield field’ switch may be used.

[mh.6] MH.6.8 UCI version

PICK(1) -52- PICK(1)

With ‘–before’ and ‘–after’, pick will actually parse the date fields in each of the messages specified in
‘msgs’ and compare them to the date/time specified. If ‘–after’ is given, then only those messages whose
‘‘Date:’’ field value is chronologically after the date specified will be considered. The ‘–before’ switch
specifies the complimentary action.

Both the ‘–after’ and ‘–before’ switches take legal 822–style date specifications as arguments. Pick will
default certain missing fields so that the entire date need not be specified. These fields are (in order of
defaulting): timezone, time and timezone, date, date and timezone. All defaults are taken from the current
date, time, and timezone.

In addition to 822–style dates, pick will also recognize any of the days of the week (‘‘sunday’’, ‘‘monday’’,
and so on), and the special dates ‘‘today’’, ‘‘yesterday’’ (24 hours ago), and ‘‘tomorrow’’ (24 hours from
now). All days of the week are judged to refer to a day in the past (e.g., telling pick ‘‘saturday’’ on a ‘‘tues-
day’’ means ‘‘last saturday’’ not ‘‘this saturday’’).

Finally, in addition to these special specifications, pick will also honor a specification of the form ‘‘–dd’’,
which means ‘‘dd days ago’’.

Pick supports complex boolean operations on the searching primitives with the ‘–and’, ‘–or’, ‘–not’, and
‘–lbrace ... –rbrace’ switches. For example,

pick –after yesterday –and –lbrace –from freida –or –from fear –rbrace

identifies messages recently sent by ‘‘frieda’’ or ‘‘fear’’.

The matching primitives take precedence over the ‘–not’ switch, which in turn takes precedence over
‘–and’ which in turn takes precedence over ‘–or’. To override the default precedence, the ‘–lbrace’ and
‘–rbrace’ switches are provided, which act just like opening and closing parentheses in logical expressions.

If no search criteria are given, all the messages specified on the command line are selected (this defaults to
‘‘all’’).

Once the search has been performed, if the ‘–list’ switch is given, the message numbers of the selected mes-
sages are written to the standard output separated by newlines. This is extremely useful for quickly generat-
ing arguments for other MH programs by using the ‘‘backquoting’’ syntax of the shell. For example, the
command

scan ‘pick +todo –after ‘‘31 Mar 83 0123 PST’’‘

says to scan those messages in the indicated folder which meet the appropriate criterion. Note that since
pick ’s context changes are written out prior to scan ’s invocation, you need not give the folder argument
to scan as well.

Regardless of the operation of the ‘–list’ switch, the ‘–sequence name’ switch may be given once for each
sequence the user wishes to define. For each sequence named, that sequence will be defined to mean
exactly those messages selected by pick. For example,

pick –from frated –seq fred

defines a new message sequence for the current folder called ‘‘fred’’ which contains exactly those messages
that were selected.

[mh.6] MH.6.8 UCI version

PICK(1) -53- PICK(1)

Note that whenever pick processes a ‘–sequence name’ switch, it sets ‘–nolist’.

By default, pick will zero the sequence before adding it. This action can be disabled with the ‘–nozero’
switch, which means that the messages selected by pick will be added to the sequence, if it already exists,
and any messages already a part of that sequence will remain so.

The ‘–public’ and ‘–nopublic’ switches are used by pick in the same way mark uses them.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder

See Also

mark(1)

Defaults

‘+folder’ defaults to the current folder
‘msgs’ defaults to all
‘–datefield date’
‘–nopublic’ if the folder is read–only, ‘–public’ otherwise
‘–zero’
‘–list’ is the default if no ‘–sequence’, ‘–nolist’ otherwise

Context

If a folder is given, it will become the current folder.

History

In previous versions of MH, the pick command would show, scan, or refile the selected messages. This was
rather ‘‘inverted logic’’ from the UNIX point of view, so pick was changed to define sequences and output
those sequences. Hence, pick can be used to generate the arguments for all other MH commands, instead of
giving pick endless switches for invoking those commands itself.

Also, previous versions of pick balked if you didn’t specify a search string or a date/time constraint. The
current version does not, and merely matches the messages you specify. This lets you type something like:

show ‘pick last:20 –seq fear‘

instead of typing

mark –add –nozero –seq fear last:20
show fear

Finally, timezones used to be ignored when comparing dates: they aren’t any more.

Helpful Hints

Use ‘‘pick sequence –list’’ to enumerate the messages in a sequence (such as for use by a shell script).

[mh.6] MH.6.8 UCI version

PICK(1) -54- PICK(1)

Bugs

The argument to the ‘–after’ and ‘–before’ switches must be interpreted as a single token by the shell that
invokes pick. Therefore, one must usually place the argument to this switch inside double–quotes. Further-
more, any occurance of ‘–datefield’ must occur prior to the ‘–after’ or ‘–before’ switch it applies to.

If pick is used in a back–quoted operation, such as

scan ‘pick –from jones‘

and pick selects no messages (e.g., no messages are from ‘‘jones’’), then the shell will still run the outer
command (e.g., ‘‘scan’’). Since no messages were matched, pick produced no output, and the argument
given to the outer command as a result of backquoting pick is empty. In the case of MH programs, the
outer command now acts as if the default ‘msg’ or ‘msgs’ should be used (e.g., ‘‘all’’ in the case of scan).
To prevent this unexpected behavior, if ‘–list’ was given, and if its standard output is not a tty, then pick
outputs the illegal message number ‘‘0’’ when it fails. This lets the outer command fail gracefully as well.

The pattern syntax ‘‘[l-r]’’ is not supported; each letter to be matched must be included within the square
brackets.

[mh.6] MH.6.8 UCI version

PREV(1) -55- PREV(1)

NAME

prev – show the previous message

SYNOPSIS

prev [+folder] [–header] [–noheader] [–showproc program] [–noshowproc] [–switches for showproc]
[–help]

DESCRIPTION

Prev performs a show on the previous message in the specified (or current) folder. Like show, it passes any
switches on to the program named by showproc, which is called to list the message. This command is
almost exactly equivalent to ‘‘show prev’’. Consult the manual entry for show (1) for all the details.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder
showproc: Program to show the message

See Also

show(1), next(1)

Defaults

‘+folder’ defaults to the current folder
‘–header’

Context

If a folder is specified, it will become the current folder. The message that is shown (i.e., the previous mes-
sage in sequence) will become the current message.

Bugs

prev is really a link to the show program. As a result, if you make a link to prev and that link is not called
prev, your link will act like show instead. To circumvent this, add a profile–entry for the link to your MH
profile and add the argument prev to the entry.

[mh.6] MH.6.8 UCI version

PROMPTER(1) -56- PROMPTER(1)

NAME

prompter – prompting editor front-end for MH

SYNOPSIS

prompter [–erase chr] [–kill chr] [–prepend] [–noprepend] [–rapid] [–norapid] [–doteof] [–nodoteof] file
[–help]

DESCRIPTION

This program is normally not invoked directly by users but takes the place of an editor and acts as an editor
front–end. It operates on an 822–style message draft skeleton specified by file, normally provided by comp,
dist, forw, or repl.

Prompter is an editor which allows rapid composition of messages. It is particularly useful to network and
low–speed (less than 2400 baud) users of MH. It is an MH program in that it can have its own profile entry
with switches, but it is not invoked directly by the user. The commands comp, dist, forw, and repl invoke
prompter as an editor, either when invoked with ‘–editor prompter’, or by the profile entry
‘‘Editor: prompter’’, or when given the command ‘edit prompter’ at ‘‘What now?’’ level.

For each empty component prompter finds in the draft, the user is prompted for a response; A <RETURN>
will cause the whole component to be left out. Otherwise, a ‘\’ preceding a <RETURN> will continue the
response on the next line, allowing for multiline components. Continuation lines must begin with a space
or tab.

Each non–empty component is copied to the draft and displayed on the terminal.

The start of the message body is denoted by a blank line or a line of dashes. If the body is non–empty, the
prompt, which isn’t written to the file, is

‘‘--------Enter additional text’’,

or (if ‘–prepend’ was given)

‘‘--------Enter initial text’’.

Message–body typing is terminated with an end–of–file (usually CTRL–D). With the ‘–doteof’ switch, a
period on a line all by itself also signifies end–of–file. At this point control is returned to the calling pro-
gram, where the user is asked ‘‘What now?’’. See whatnow for the valid options to this query.

By using the ‘–prepend’ switch, the user can add type–in to the beginning of the message body and have
the rest of the body follow. This is useful for the forw command.

By using the ‘–rapid’ switch, if the draft already contains text in the message–body, it is not displayed on
the user’s terminal. This is useful for low–speed terminals.

The line editing characters for kill and erase may be specified by the user via the arguments ‘–kill chr’ and
‘–erase chr’, where chr may be a character; or ‘\nnn’, where ‘‘nnn’’ is the octal value for the character.

An interrupt (usually CTRL–C) during component typing will abort prompter and the MH command that
invoked it. An interrupt during message–body typing is equivalent to CTRL–D, for historical reasons.
This means that prompter should finish up and exit.

[mh.6] MH.6.8 UCI version

PROMPTER(1) -57- PROMPTER(1)

The first non–flag argument to prompter is taken as the name of the draft file, and subsequent non–flag
arguments are ignored.

Files

$HOME/.mh_profile The user profile
/tmp/prompter* Temporary copy of message

Profile Components

prompter–next: To name the editor to be used on exit from prompter
Msg–Protect: To set mode when creating a new draft

See Also

comp(1), dist(1), forw(1), repl(1), whatnow(1)

Defaults

‘–prepend’
‘–norapid’
‘–nodoteof’

Context

None

Helpful Hints

The ‘–rapid’ option is particularly useful with forw, and ‘–noprepend’ is useful with comp –use.

The user may wish to link prompter under several names (e.g., ‘‘rapid’’) and give appropriate switches in
the profile entries under these names (e.g., ‘‘rapid: -rapid’’). This facilitates invoking prompter differently
for different MH commands (e.g., ‘‘forw: -editor rapid’’).

Bugs

Prompter uses stdio (3), so it will lose if you edit files with nulls in them.

[mh.6] MH.6.8 UCI version

RCVSTORE(1) -58- RCVSTORE(1)

NAME

rcvstore – incorporate new mail asynchronously

SYNOPSIS

/usr/local/lib/mh/rcvstore [+folder] [–create] [–nocreate] [–sequence name ...] [–public] [–nopublic] [–zero]
[–nozero] [–help]

DESCRIPTION

Rcvstore incorporates a message from the standard input into an MH folder. If ‘+folder’ isn’t specified, a
folder in the user’s MH directory will be used, either that specified by the ‘‘Inbox:’’ entry in the user’s
profile, or the folder named ‘‘inbox’’. The new message being incorporated is assigned the next highest
number in the folder. If the specified (or default) folder doesn’t exist, then it will be created if the ‘–create’
option is specified, otherwise rcvstore will exit.

If the user’s profile contains a ‘‘Msg–Protect: nnn’’ entry, it will be used as the protection on the newly
created messages, otherwise the MH default of 0644 will be used. During all operations on messages, this
initially assigned protection will be preserved for each message, so chmod(1) may be used to set a protec-
tion on an individual message, and its protection will be preserved thereafter.

Rcvstore will incorporate anything except zero length messages into the user’s MH folder.

If the profile entry ‘‘Unseen–Sequence’’ is present and non–empty, then rcvstore will add the newly incor-
porated message to each sequence named by the profile entry. This is similar to the ‘‘Previous–Sequence’’
profile entry supported by all MH commands which take ‘msgs’ or ‘msg’ arguments. Note that rcvstore
will not zero each sequence prior to adding messages.

Furthermore, the incoming messages may be added to user-defined sequences as they arrive by appropriate
use of the ‘–sequence’ option. As with pick, use of the ‘–zero’ and ‘–nozero’ switches can also be used to
zero old sequences or not. Similarly, use of the ‘–public’ and ‘–nopublic switches may be used to force
additions to public and private sequences.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Folder–Protect: To set mode when creating a new folder
Inbox: To find the default inbox
Msg–Protect: To set mode when creating a new message
Unseen–Sequence: To name sequences denoting unseen messages

See Also

inc(1), pick(1), mh–mail(5)

Defaults

‘+folder’ defaults to ‘‘inbox’’
‘–create’
‘–nopublic’ if the folder is read–only, ‘–public’ otherwise
‘–nozero’

Context

No context changes will be attempted, with the exception of sequence manipulation.

[mh.6] MH.6.8 UCI version

RCVSTORE(1) -59- RCVSTORE(1)

Bugs

If you use the ‘‘Unseen–Sequence’’ profile entry, rcvstore could try to update the context while another
MH process is also trying to do so. This can cause the context to become corrupted. To avoid this, do not
use rcvstore if you use the ‘‘Unseen–Sequence’’ profile entry.

[mh.6] MH.6.8 UCI version

REFILE(1) -60- REFILE(1)

NAME

refile – file message in other folders

SYNOPSIS

refile [msgs] [–draft] [–link] [–nolink] [–preserve] [–nopreserve] [–src +folder] [–file file] [–rmmproc pro-
gram] [–normmproc] +folder ... [–help]

DESCRIPTION

Refile moves (mv (1)) or links (ln (1)) messages from a source folder into one or more destination folders.
If you think of a message as a sheet of paper, this operation is not unlike filing the sheet of paper (or copies)
in file cabinet folders. When a message is filed, it is linked into the destination folder(s) if possible, and is
copied otherwise. As long as the destination folders are all on the same file system, multiple filing causes
little storage overhead. This facility provides a good way to cross–file or multiply–index messages. For
example, if a message is received from Jones about the ARPA Map Project, the command

refile cur +jones +Map

would allow the message to be found in either of the two folders ‘jones’ or ‘Map’.

The option ‘–file file’ directs refile to use the specified file as the source message to be filed, rather than a
message from a folder. Note that the file should be a validly formatted message, just like any other MH
message. It should NOT be in mail drop format (to convert a file in mail drop format to a folder of MH
messages, see inc (1)).

If a destination folder doesn’t exist, refile will ask if you want to create it. A negative response will abort
the file operation. If the standard input for refile is not a tty, then refile will not ask any questions and will
proceed as if the user answered ‘‘yes’’ to all questions.

The option ‘–link’ preserves the source folder copy of the message (i.e., it does a ln(1) rather than a mv(1)),
whereas, ‘–nolink’ deletes the filed messages from the source folder. Normally, when a message is filed, it
is assigned the next highest number available in each of the destination folders. Use of the ‘–preserve’
switch will override this message renaming, but name conflicts may occur, so use this switch cautiously.

If ‘–link’ is not specified (or ‘–nolink’ is specified), the filed messages will be removed from the source
folder, by renaming them with a site-dependent prefix (usually a comma).

If the user has a profile component such as

rmmproc: /bin/rm

then refile will instead call the named program to delete the message files. The user may specify
‘–rmmproc program’ on the command line to override this profile specification. The `-normmproc’ option
forces the message files to be deleted by renaming them as described above.

The ‘–draft’ switch tells refile to file the <mh–dir>/draft.

Files

$HOME/.mh_profile The user profile

[mh.6] MH.6.8 UCI version

REFILE(1) -61- REFILE(1)

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder
Folder–Protect: To set mode when creating a new folder
rmmproc: Program to delete the message

See Also

folder(1)

Defaults

‘–src +folder’ defaults to the current folder
‘msgs’ defaults to cur
‘–nolink’
‘–nopreserve’

Context

If ‘–src +folder’ is given, it will become the current folder. If neither ‘–link’ nor ‘all’ is specified, the
current message in the source folder will be set to the last message specified; otherwise, the current message
won’t be changed.

If the Previous–Sequence profile entry is set, in addition to defining the named sequences from the source
folder, refile will also define those sequences for the destination folders. See mh–sequence (5) for informa-
tion concerning the previous sequence.

Bugs

Since refile uses your rmmproc to delete the message, the rmmproc must NOT call refile without specifying
‘–normmproc’, or you will create an infinte loop.

[mh.6] MH.6.8 UCI version

REPL(1) -62- REPL(1)

NAME

repl – reply to a message

SYNOPSIS

repl [+folder] [msg] [–annotate] [–noannotate] [–cc all/to/cc/me] [–nocc all/to/cc/me] [–draftfolder +folder]
[–draftmessage msg] [–nodraftfolder] [–editor editor] [–noedit] [–fcc +folder] [–filter filterfile]
[–form formfile] [–inplace] [–noinplace] [–query] [–noquery] [–width columns]
[–whatnowproc program] [–nowhatnowproc] [–help]

DESCRIPTION

Repl aids a user in producing a reply to an existing message. Repl uses a reply template to guide its actions
when constructing the message draft of the reply. In its simplest form (with no arguments), it will set up a
message–form skeleton in reply to the current message in the current folder, and invoke the whatnow shell.
The default reply template will direct repl to construct the composed message as follows:

To: <Reply–To> or <From>
cc: <cc>, <To>, and yourself
Subject: Re: <Subject>
In–reply–to: Your message of <Date>.

<Message–Id>

where field names enclosed in angle brackets (< >) indicate the contents of the named field from the mes-
sage to which the reply is being made. A reply template is simply a format file. See mh–format (5) for the
details.

The ‘–cc type’ switch takes an argument which specifies who gets placed on the ‘‘cc:’’ list of the reply.
The ‘–query’ switch modifies the action of ‘–cc type’ switch by interactively asking you if each address that
normally would be placed in the ‘‘To:’’ and ‘‘cc:’’ list should actually be sent a copy. (This is useful for
special–purpose replies.) Note that the position of the ‘–cc’ and ‘–nocc’ switches, like all other switches
which take a positive and negative form, is important.

Lines beginning with the fields ‘‘To:’’, ‘‘cc:’’, and ’’Bcc:’’ will be standardized and have duplicate
addresses removed. In addition, the ‘–width columns’ switch will guide repl’s formatting of these fields.

If the file named ‘‘replcomps’’ exists in the user’s MH directory, it will be used instead of the default form.
In either case, the file specified by ‘–form formfile’ will be used if given.

If the draft already exists, repl will ask you as to the disposition of the draft. A reply of quit will abort repl,
leaving the draft intact; replace will replace the existing draft with a blank skeleton; and list will display
the draft.

See comp (1) for a description of the ‘–editor’ and ‘–noedit’ switches. Note that while in the editor, the
message being replied to is available through a link named ‘‘@’’ (assuming the default whatnowproc). In
addition, the actual pathname of the message is stored in the envariable $editalt, and the pathname of the
folder containing the message is stored in the envariable $mhfolder.

Although repl uses the ‘–form formfile’ switch to direct it how to construct the beginning of the draft, the
‘–filter filterfile’ switch directs repl as to how the message being replied–to should be formatted in the body
of the draft. If ‘–filter’ is not specified, then the message being replied–to is not included in the body of the
draft. If ‘–filter filterfile’ is specified, then the message being replied–to is filtered (re–formatted) prior to
being output to the body of the draft. The filter file for repl should be a standard form file for mhl, as repl

[mh.6] MH.6.8 UCI version

REPL(1) -63- REPL(1)

will invoke mhl to format the message being replied–to. There is no default message filter (‘–filter’ must be
followed by a file name). A filter file that is commonly used is:

:
body:nocomponent,compwidth=9,offset=9

which says to output a blank line and then the body of the message being replied–to, indented by one
tab–stop. Another format popular on USENET is:

message-id:nocomponent,Ononewline,Oformatfield=‘‘In message %{text}, ’’
from:nocomponent,Oformatfield=‘‘%(friendly{text}) writes:’’
body:component=‘‘>’’,Ooverflowtext=‘‘>’’,Ooverflowoffset=0

Which cites the Message-ID and author of the message being replied–to, and then outputs each line of the
body prefaced with the ‘‘>’’ character.

If the ‘–annotate’ switch is given, the message being replied–to will be annotated with the lines

Replied: date
Replied: addrs

where the address list contains one line for each addressee. The annotation will be done only if the message
is sent directly from repl. If the message is not sent immediately from repl, ‘‘comp –use’’ may be used to
re–edit and send the constructed message, but the annotations won’t take place. The ‘–inplace’ switch
causes annotation to be done in place in order to preserve links to the annotated message.

The ‘–fcc +folder’ switch can be used to automatically specify a folder to receive Fcc:s. More than one
folder, each preceeded by ‘–fcc’ can be named.

In addition to the standard mh–format (5) escapes, repl also recognizes the following additional component
escape:

Escape Returns Description
fcc string Any folders specified with ‘–fcc folder’

To avoid reiteration, repl strips any leading ‘Re: ’ strings from the subject component.

The ‘–draftfolder +folder’ and ‘–draftmessage msg’ switches invoke the MH draft folder facility. This is an
advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for more
information.

Upon exiting from the editor, repl will invoke the whatnow program. See whatnow (1) for a discussion of
available options. The invocation of this program can be inhibited by using the ‘–nowhatnowproc’ switch.
(In truth of fact, it is the whatnow program which starts the initial edit. Hence, ‘–nowhatnowproc’ will
prevent any edit from occurring.)

Files

/usr/local/lib/mh/replcomps The reply template
or <mh–dir>/replcomps Rather than the standard template
$HOME/.mh_profile The user profile
<mh–dir>/draft The draft file

[mh.6] MH.6.8 UCI version

REPL(1) -64- REPL(1)

Profile Components

Path: To determine the user’s MH directory
Alternate–Mailboxes: To determine the user’s mailboxes
Current–Folder: To find the default current folder
Draft–Folder: To find the default draft–folder
Editor: To override the default editor
Msg–Protect: To set mode when creating a new message (draft)
fileproc: Program to refile the message
mhlproc: Program to filter message being replied–to
whatnowproc: Program to ask the ‘‘What now?’’ questions

See Also

comp(1), dist(1), forw(1), send(1), whatnow(1), mh–format(5)

Defaults

‘+folder’ defaults to the current folder
‘msg’ defaults to cur
‘–nocc all’ at ATHENA sites, ‘–cc all’ otherwise
‘–noannotate’
‘–nodraftfolder’
‘–noinplace’
‘–noquery’
‘–width 72’

Context

If a folder is given, it will become the current folder. The message replied–to will become the current mes-
sage.

History

Prior to using the format string mechanism, ‘–noformat’ used to cause address headers to be output as–is.
Now all address fields are formatted using Internet standard guidelines.

Bugs

If any addresses occur in the reply template, addresses in the template that do not contain hosts are default-
ed incorrectly. Instead of using the localhost for the default, repl uses the sender’s host. Moral of the story:
if you’re going to include addresses in a reply template, include the host portion of the address.

The ‘–width columns’ switch is only used to do address-folding; other headers are not line–wrapped.

If whatnowproc is whatnow, then repl uses a built–in whatnow, it does not actually run the whatnow pro-
gram. Hence, if you define your own whatnowproc, don’t call it whatnow since repl won’t run it.

If your current working directory is not writable, the link named ‘‘@’’ is not available.

[mh.6] MH.6.8 UCI version

RMF(1) -65- RMF(1)

NAME

rmf – remove an MH folder

SYNOPSIS

rmf [+folder] [–interactive] [–nointeractive] [–help]

DESCRIPTION

Rmf removes all of the messages (files) within the specified (or default) folder, and then removes the folder
(directory) itself. If there are any files within the folder which are not a part of MH, they will not be
removed, and an error will be produced. If the folder is given explicitly or the ‘–nointeractive’ option is
given, then the folder will be removed without confirmation. Otherwise, the user will be asked for
confirmation. If rmf can’t find the current folder, for some reason, the folder to be removed defaults to
‘+inbox’ (unless overridden by user’s profile entry ‘‘Inbox’’) with confirmation.

Rmf irreversibly deletes messages that don’t have other links, so use it with caution.

If the folder being removed is a subfolder, the parent folder will become the new current folder, and rmf
will produce a message telling the user this has happened. This provides an easy mechanism for selecting a
set of messages, operating on the list, then removing the list and returning to the current folder from which
the list was extracted.

Rmf of a read–only folder will delete the private sequence and cur information (i.e., ‘‘atr–seq–folder’’
entries) from the profile without affecting the folder itself.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder
Inbox: To find the default inbox

See Also

rmm(1)

Defaults

‘+folder’ defaults to the current folder, usually with confirmation
‘–interactive’ if +folder’ not given, ‘–nointeractive’ otherwise

Context

Rmf will set the current folder to the parent folder if a subfolder is removed; or if the current folder is re-
moved, it will make ‘‘inbox’’ current. Otherwise, it doesn’t change the current folder or message.

Bugs

Although intuitively one would suspect that rmf works recursively, it does not. Hence if you have a
sub–folder within a folder, in order to rmf the parent, you must first rmf each of the children.

[mh.6] MH.6.8 UCI version

RMM(1) -66- RMM(1)

NAME

rmm – remove messages

SYNOPSIS

rmm [+folder] [msgs] [–help]

DESCRIPTION

Rmm removes the specified messages by renaming the message files with preceding commas. Many sites
consider files that start with a comma to be a temporary backup, and arrange for cron (8) to remove such
files once a day.

If the user has a profile component such as

rmmproc: /bin/rm

then instead of simply renaming the message file, rmm will call the named program to delete the file. Note
that at most installations, cron (8) is told to remove files that begin with a comma once a night.

Some users of csh prefer the following:

alias rmm ’refile +d’

where folder +d is a folder for deleted messages, and

alias mexp ’rm ‘mhpath +d all‘’

is used to ‘‘expunge’’ deleted messages.

The current message is not changed by rmm, so a next will advance to the next message in the folder as
expected.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder
rmmproc: Program to delete the message

See Also

rmf(1)

Defaults

‘+folder’ defaults to the current folder
‘msgs’ defaults to cur

Context

If a folder is given, it will become the current folder.

Bugs

Since refile uses your rmmproc to delete the message, the rmmproc must NOT call refile without specifying
‘–normmproc’, or you will create an infinte loop.

[mh.6] MH.6.8 UCI version

SCAN(1) -67- SCAN(1)

NAME

scan – produce a one line per message scan listing

SYNOPSIS

scan [+folder] [msgs] [–clear] [–noclear] [–form formatfile] [–format string] [–header] [–noheader]
[–width columns] [–reverse] [–noreverse] [–file filename] [–help]

DESCRIPTION

Scan produces a one–line–per–message listing of the specified messages. Each scan line contains the mes-
sage number (name), the date, the ‘‘From:’’ field, the ‘‘Subject’’ field, and, if room allows, some of the
body of the message. For example:

15+ 7/ 5 Dcrocker nned <<Last week I asked some of
16 - 7/ 5 dcrocker message id format <<I recommend
18 7/ 6 Obrien Re: Exit status from mkdir
19 7/ 7 Obrien ‘‘scan’’ listing format in MH

The ‘+’ on message 15 indicates that it is the current message. The ‘–’ on message 16 indicates that it has
been replied to, as indicated by a ‘‘Replied:’’ component produced by an ‘–annotate’ switch to the repl
command.

If there is sufficient room left on the scan line after the subject, the line will be filled with text from the
body, preceded by <<, and terminated by >> if the body is sufficiently short. Scan actually reads each of
the specified messages and parses them to extract the desired fields. During parsing, appropriate error mes-
sages will be produced if there are format errors in any of the messages.

The ‘–header’ switch produces a header line prior to the scan listing. Currently, the name of the folder and
the current date and time are output (see the HISTORY section for more information).

If the ‘–clear’ switch is used and scan’s output is directed to a terminal, then scan will consult the $TERM
and $TERMCAP envariables to determine your terminal type in order to find out how to clear the screen
prior to exiting. If the ‘–clear’ switch is used and scan’s output is not directed to a terminal (e.g., a pipe or
a file), then scan will send a formfeed prior to exiting.

For example, the command:

(scan –clear –header; show all –show pr –f) | lpr

produces a scan listing of the current folder, followed by a formfeed, followed by a formatted listing of all
messages in the folder, one per page. Omitting ‘–show pr –f’ will cause the messages to be concatenated,
separated by a one–line header and two blank lines.

If scan encounters a message without a ‘‘Date:’’ field, rather than leaving that portion of the scan listing
blank, the date is filled–in with the last write date of the message, and post–fixed with a ‘*’. This is particu-
larly handy for scanning a draft folder, as message drafts usually aren’t allowed to have dates in them.

To override the output format used by scan, the ‘–format string’ or ‘–form file’ switches are used. This per-
mits individual fields of the scan listing to be extracted with ease. The string is simply a format string and
the file is simply a format file. See mh–format (5) for the details.

In addition to the standard mh–format (5) escapes, scan also recognizes the following additional

[mh.6] MH.6.8 UCI version

SCAN(1) -68- SCAN(1)

component escapes:

Escape Returns Description
body string the (compressed) first part of the body
dtimenow date the current date
folder string the name of the current folder

Also, if no date header was present in the message, the function escapes which operate on {dateO} will
return values for the date of last modification of the message file itself.

scan will update the MH context prior to starting the listing, so interrupting a long scan listing preserves the
new context. MH purists hate this idea.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Alternate–Mailboxes: To determine the user’s mailboxes
Current–Folder: To find the default current folder

See Also

inc(1), pick(1), show(1), mh–format(5)

Defaults

‘+folder’ defaults to the folder current
‘msgs’ defaults to all
‘–format’ defaulted as described above
‘–noheader’
‘–width’ defaulted to the width of the terminal

Context

If a folder is given, it will become the current folder.

History

Prior to using the format string mechanism, ‘–header’ used to generate a heading saying what each column
in the listing was. Format strings prevent this from happening.

Bugs

The argument to the ‘–format’ switch must be interpreted as a single token by the shell that invokes scan.
Therefore, one must usually place the argument to this switch inside double–quotes.
The value of each component escape is set by scan to the contents of the first message header scan en-
counters with the corresponding component name; any following headers with the same component name
are ignored.

The switch ‘–reverse’, makes scan list the messages in reverse order; this should be considered a bug.

The ‘–file filename’ switch allows the user to obtain a scan listing of a maildrop file as produced by packf.
This listing includes every message in the file. The user should use msh for more selective processing of
the file. ‘–reverse’ is ignored with this option.

[mh.6] MH.6.8 UCI version

SEND(1) -69- SEND(1)

NAME

send – send a message

SYNOPSIS

send [–alias aliasfile] [–draft] [–draftfolder +folder] [–draftmessage msg] [–nodraftfolder] [–filter filterfile]
[–nofilter] [–format] [–noformat] [–forward] [–noforward] [–msgid] [–nomsgid] [–push]
[–nopush] [–verbose] [–noverbose] [–watch] [–nowatch] [–width columns] [file ...] [–help]

DESCRIPTION

Send will cause each of the specified files to be delivered (via post (8)) to each of the destinations in the
‘‘To:’’, ‘‘cc:’’, ‘‘Bcc:’’, and ‘‘Fcc:’’ fields of the message. If send is re–distributing a message, as invoked
from dist, then the corresponding ‘‘Resent–xxx’’ fields are examined instead.

If ‘–push’ is specified, send will detach itself from the user’s terminal and perform its actions in the back-
ground. If push ’d and the draft can’t be sent, then the ‘–forward’ switch says that draft should be for-
warded with the failure notice sent to the user. This differs from putting send in the background because
the output is trapped and analyzed by MH.

If ‘–verbose’ is specified, send will indicate the interactions occurring with the transport system, prior to
actual delivery. If ‘–watch’ is specified send will monitor the delivery of local and network mail. Hence,
by specifying both switches, a large detail of information can be gathered about each step of the message’s
entry into the transport system.

The ‘–draftfolder +folder’ and ‘–draftmessage msg’ switches invoke the MH draft folder facility. This is an
advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for more
information.

Send with no file argument will query whether the draft is the intended file, whereas ‘–draft’ will suppress
this question. Once the transport system has successfully accepted custody of the message, the file will be
renamed with a leading comma, which allows it to be retrieved until the next draft message is sent. If there
are errors in the formatting of the message, send will abort with a (hopefully) helpful error message.

If a ‘‘Bcc:’’ field is encountered, its addresses will be used for delivery, and the ‘‘Bcc:’’ field will be
removed from the message sent to sighted recipients. The blind recipients will receive an entirely new mes-
sage with a minimal set of headers. Included in the body of the message will be a copy of the message sent
to the sighted recipients. If ‘–filter filterfile’ is specified, then this copy is filtered (re–formatted) prior to
being sent to the blind recipients.

Prior to sending the message, the fields ‘‘From: user@local’’, and ‘‘Date: now’’ will be appended to the
headers in the message. If the envariable $SIGNATURE is set, then its value is used as your personal
name when constructing the ‘‘From:’’ line of the message. If this envariable is not set, then send will con-
sult the profile entry ‘‘Signature’’ for this information. On hosts where MH was configured with the UCI
option, if $SIGNATURE is not set and the ‘‘Signature’’ profile entry is not present, then the file
$HOME/.signature is consulted. If ‘–msgid’ is specified, then a ‘‘Message–ID:’’ field will also be added to
the message.

If send is re–distributing a message (when invoked by dist), then ‘‘Resent–’’ will be prepended to each of
these fields: ‘‘From:’’, ‘‘Date:’’, and ‘‘Message–ID:’’. If the message already contains a ‘‘From:’’ field,
then a ‘‘Sender: user@local’’ field will be added as well. (An already existing ‘‘Sender:’’ field is an error!)

By using the ‘–format’ switch, each of the entries in the ‘‘To:’’ and ‘‘cc:’’ fields will be replaced with

[mh.6] MH.6.8 UCI version

SEND(1) -70- SEND(1)

‘‘standard’’ format entries. This standard format is designed to be usable by all of the message handlers on
the various systems around the Internet. If ‘–noformat’ is given, then headers are output exactly as they
appear in the message draft.

If an ‘‘Fcc: folder’’ is encountered, the message will be copied to the specified folder for the sender in the
format in which it will appear to any non–Bcc receivers of the message. That is, it will have the appended
fields and field reformatting. The ‘‘Fcc:’’ fields will be removed from all outgoing copies of the message.

By using the ‘–width columns’ switch, the user can direct send as to how long it should make header lines
containing addresses.

The files specified by the profile entry ‘‘Aliasfile:’’ and any additional alias files given by the ‘–alias
aliasfile’ switch will be read (more than one file, each preceeded by ‘–alias’, can be named). See
mh–alias (5) for more information.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Draft–Folder: To find the default draft–folder
Aliasfile: For a default alias file
Signature: To determine the user’s mail signature
mailproc: Program to post failure notices
postproc: Program to post the message

See Also

comp(1), dist(1), forw(1), repl(1), mh–alias(5), post(8)

Defaults

‘file’ defaults to <mh–dir>/draft
‘–alias /usr/local/lib/mh/MailAliases’
‘–nodraftfolder’
‘–nofilter’
‘–format’
‘–forward’
‘–nomsgid’
‘–nopush’
‘–noverbose’
‘–nowatch’
‘–width 72’

Context

None

Bugs

Under some configurations, it is not possible to mointor the mail delivery transaction; ‘–watch’ is a no-op
on those systems.

[mh.6] MH.6.8 UCI version

SHOW(1) -71- SHOW(1)

NAME

show – show (list) messages

SYNOPSIS

show [+folder] [msgs] [–draft] [–header] [–noheader] [–showproc program] [–noshowproc]
[switches for showproc] [–help]

DESCRIPTION

Show lists each of the specified messages to the standard output (typically, the terminal). Typically, the
messages are listed exactly as they are, with no reformatting. A program named by the showproc profile
component is invoked to do the listing, and any switches not recognized by show are passed along to that
program. The default program is known as more (1). To override the default and the showproc profile
component, use the ‘–showproc program’ switch. For example, ‘–show pr’ will cause the pr (1) program
to list the messages. The MH command mhl can be used as a showproc to show messages in a more uni-
form format. Normally, this program is specified as the showproc is the user’s .mh_profile. See mhl (1)
for the details. If the ‘–noshowproc’ option is specified, ‘/bin/cat’ is used instead of showproc.

The ‘–header’ switch tells show to display a one–line description of the message being shown. This
description includes the folder and the message number.

If no ‘msgs’ are specified, the current message is used. If more than one message is specified, more will
prompt for a <RETURN> prior to listing each message. more will list each message, a page at a time.
When the end of page is reached, more will ring the bell and wait for a <SPACE> or <RETURN>. If a
<RETURN> is entered, more will print the next line, whereas <SPACE> will print the next screenful. To
exit more, type ‘‘q’’.

If the standard output is not a terminal, no queries are made, and each file is listed with a one–line header
and two lines of separation.

‘‘show –draft’’ will list the file <mh–dir>/draft if it exists.

If the profile entry ‘‘Unseen–Sequence’’ is present and non–empty, then show will remove each of the mes-
sages shown from each sequence named by the profile entry. This is similar to the ‘‘Previous–Sequence’’
profile entry supported by all MH commands which take ‘msgs’ or ‘msg’ arguments.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder
Unseen–Sequence: To name sequences denoting unseen messages
showproc: Program to show messages

See Also

mhl(1), more(1), next(1), pick(1), prev(1), scan(1)

Defaults

‘+folder’ defaults to the current folder
‘msgs’ defaults to cur
‘–header’

[mh.6] MH.6.8 UCI version

SHOW(1) -72- SHOW(1)

Context

If a folder is given, it will become the current folder. The last message shown will become the current mes-
sage.

Bugs

The ‘–header’ switch doesn’t work when ‘msgs’ expands to more than one message. If the showproc is
mhl, then is problem can be circumvented by referencing the ‘‘messagename’’ field in the mhl format file.

Show updates the user’s context before showing the message. Hence show will mark messages as seen pri-
or to the user actually seeing them. This is generally not a problem, unless the user relies on the ‘‘unseen’’
messages mechanism, and interrupts show while it is showing ‘‘unseen’’ messages.

If showproc is mhl, then show uses a built–in mhl: it does not actually run the mhl program. Hence, if you
define your own showproc, don’t call it mhl since show won’t run it.

If more (1) is your showproc (the default), then avoid running show in the background with only its stan-
dard output piped to another process, as in

show | imprint &

Due to a bug in more, show will go into a ‘‘tty input’’ state. To avoid this problem, re–direct show’s diag-
nostic output as well. For users of csh:

show |& imprint &

For users of sh:

show 2>&1 | imprint &

[mh.6] MH.6.8 UCI version

SLOCAL(1) -73- SLOCAL(1)

NAME

slocal – special local mail delivery

SYNOPSIS

/usr/local/lib/mh/slocal [address info sender]
[–addr address] [–info data] [–sender sender]
[–user username] [–mailbox mbox] [–file file]
[–maildelivery deliveryfile] [–verbose] [–noverbose] [–debug] [–help]

DESCRIPTION

Slocal is a program designed to allow you to have your inbound mail processed according to a complex set
of selection criteria. You do not normally invoke slocal yourself, rather slocal is invoked on your behalf by
your system’s Message Transfer Agent.

The message selection criteria used by slocal is specified in the file .maildelivery in the user’s home direc-
tory. The format of this file is given below.

The message delivery address and message sender are determined from the Message Transfer Agent
envelope information, if possible. Under SendMail, the sender will obtained from the UUCP ‘‘From ’’ line,
if present. The user may override these values with command line arguments, or arguments to the ‘–addr’
and ‘–sender’ switches.

The message is normally read from the standard input. The ‘–file’ switch sets the name of the file from
which the message should be read, instead of reading stdin. The ‘–user’ switch tells slocal the name of the
user for whom it is delivering mail. The ‘–mailbox’ switch tells slocal the name of the user’s maildrop file.

The ‘–info’ switch may be used to pass an arbitrary argument to sub-processes which slocal may invoke on
your behalf. The ‘–verbose’ switch causes slocal to give information on stdout about its progress. The
‘–debug’ switch produces more verbose debugging output on stderr.

Message Transfer Agents

If your MTA is SendMail, you should include the line

‘‘| /usr/local/lib/mh/slocal –user username’’

in your .forward file in your home directory. This will cause SendMail to invoke slocal on your behalf.

If your MTA is MMDF-I, you should (symbolically) link /usr/local/lib/mh/slocal to the file bin/rcvmail in
your home directory. This will cause MMDF-I to invoke slocal on your behalf with the correct
‘‘address info sender’’ arguments.

If your MTA is MMDF-II, then you should not use slocal. An equivalent functionality is already provided
by MMDF-II; see maildelivery(5) for details.

The Maildelivery File

The .maildelivery file controls how local delivery is performed. Each line of this file consists of five fields,

[mh.6] MH.6.8 UCI version

SLOCAL(1) -74- SLOCAL(1)

separated by white-space or comma. Since double-quotes are honored, these characters may be included in
a single argument by enclosing the entire argument in double-quotes. A double-quote can be included by
preceding it with a backslash. Lines beginning with ‘#’ are ignored. The format of each line in the .mail-
delivery file is:

header pattern action result string

header:
The name of a header field that is to be searched for a pattern. This is any field in the headers of
the message that might be present. The following special fields are also defined:

source the out-of-band sender information
addr the address that was used to cause delivery to the recipient
default this matches only if the message hasn’t been delivered yet
* this always matches

pattern:
The sequence of characters to match in the specified header field. Matching is case-insensitive,
but does not use regular expressions.

action:
The action to take to deliver the message:

destroy This action always succeeds.

file or > Append the message to the file named by string. The message is appended to
the file in the maildrop format which is used by your message transport system.
If the message can be appended to the file, then this action succeeds. When writ-
ing to the file, a ‘‘Delivery–Date: date’’ header is added which indicates the date
and time that message was appended to the file.

mbox Identical to file, but always appends the message using the format used by packf
(the MMDF mailbox format).

pipe or | Pipe the message as the standard input to the command named by string, using
the Bourne shell sh(1) to interpret the string. Prior to giving the string to the
shell, it is expanded with the following built-in variables:

$(sender) the out-of-band sender information
$(address) the address that was used to cause delivery to the recipient
$(size) the size of the message in bytes
$(reply–to) either the ‘‘Reply–To:’’ or ‘‘From:’’ field of the message
$(info) the out-of-band information specified

qpipe or
<caret> Similar to pipe, but executes the command directly, after built-in variable expan-

sion, without assistance from the shell. This action can be used to avoid quoting
special characters which your shell might interpret.

result:
Indicates how the action should be performed:

[mh.6] MH.6.8 UCI version

SLOCAL(1) -75- SLOCAL(1)

A Perform the action. If the action succeeds, then the message is considered
delivered.

R Perform the action. Regardless of the outcome of the action, the message is not
considered delivered.

? Perform the action only if the message has not been delivered. If the action
succeeds, then the message is considered delivered.

N Perform the action only if the message has not been delivered and the previous
action succeeded. If this action succeeds, then the message is considered
delivered.

To summarize, here’s an example:

#field pattern action result string
lines starting with a ’#’ are ignored, as are blank lines
#
file mail with mmdf2 in the ‘‘To:’’ line into file mmdf2.log
To mmdf2 file A mmdf2.log
Messages from mmdf pipe to the program err-message-archive
From mmdf pipe A /bin/err-message-archive
Anything with the ‘‘Sender:’’ address ‘‘mh-workers’’
file in mh.log if not filed already
Sender mh-workers file ? mh.log
‘‘To:’’ unix – put in file unix-news
To Unix > A unix-news
if the address is jpo=ack – send an acknowledgement copy back
addr jpo=ack | R ‘‘/bin/resend –r $(reply-to)’’
anything from steve – destroy!
From steve destroy A –
anything not matched yet – put into mailbox
default – > ? mailbox
always run rcvtty
* – | R /mh/lib/rcvtty

The file is always read completely, so that several matches can be made and several actions can be taken.
The .maildelivery file must be owned either by the user or by root, and must be writable only by the owner.
If the .maildelivery file cannot be found, or does not perform an action which delivers the message, then the
file /usr/local/lib/mh/maildelivery is read according to the same rules. This file must be owned by the root
and must be writable only by the root. If this file cannot be found or does not perform an action which
delivers the message, then standard delivery to the user’s maildrop is performed.

Sub-process environment

When a process is invoked, its environment is: the user/group-ids are set to recipient’s ids; the working
directory is the recipient’s home directory; the umask is 0077; the process has no /dev/tty; the standard
input is set to the message; the standard output and diagnostic output are set to /dev/null; all other file-
descriptors are closed; the envariables $USER, $HOME, $SHELL are set appropriately, and no other
envariables exist.

[mh.6] MH.6.8 UCI version

SLOCAL(1) -76- SLOCAL(1)

The process is given a certain amount of time to execute. If the process does not exit within this limit, the
process will be terminated with extreme prejudice. The amount of time is calculated as ((size x 60) + 300)
seconds, where size is the number of bytes in the message.

The exit status of the process is consulted in determining the success of the action. An exit status of zero
means that the action succeeded. Any other exit status (or abnormal termination) means that the action
failed.

In order to avoid any time limitations, you might implement a process that began by forking. The parent
would return the appropriate value immediately, and the child could continue on, doing whatever it wanted
for as long as it wanted. This approach is somewhat risky if the parent is going to return an exit status of
zero. If the parent is going to return a non-zero exit status, then this approach can lead to quicker delivery
into your maildrop.

Files

/usr/local/lib/mh/mtstailor MH tailor file
$HOME/.maildelivery The file controlling local delivery
/usr/local/lib/mh/maildelivery Rather than the standard file
/usr/spool/mail/$USER The default maildrop

See Also

rcvstore(1), mhook(1), mh–format(5)

Defaults

‘–noverbose’
‘–maildelivery .maildelivery’
‘–mailbox /usr/spool/mail/$USER’
‘–file’ defaults to stdin
‘–user’ defaults to the current user

Context

None

History

Slocal is designed to be backward-compatible with the maildelivery facility provided by MMDF-II. Thus,
the .maildelivery file syntax is limited, as is the functionality of slocal.

In addition to an exit status of zero, the MMDF values RP_MOK (32) and RP_OK (9) mean that the mes-
sage has been fully delivered. Any other non-zero exit status, including abnormal termination, is interpret-
ed as the MMDF value RP_MECH (200), which means ‘‘use an alternate route’’ (deliver the message to the
maildrop).

Bugs

Only two return codes are meaningful, others should be.

Slocal is designed to be backwards-compatible with the maildelivery functionality provided by MMDF-II.

Versions of MMDF with the maildelivery mechanism aren’t entirely backwards-compatible with earlier
versions of MMDF. If you have an MMDF-I old-style hook, the best you can do is to have a one-line .mail-
delivery file:

default – pipe A ‘‘bin/rcvmail $(address) $(info) $(sender)’’

[mh.6] MH.6.8 UCI version

SORTM(1) -77- SORTM(1)

NAME

sortm – sort messages

SYNOPSIS

sortm [+folder] [msgs] [–datefield field] [–textfield field] [–notextfield] [–limit days] [–nolimit] [–verbose]
[–noverbose] [–help]

DESCRIPTION

Sortm sorts the specified messages in the named folder according to the chronological order of the ‘‘Date:’’
field of each message.

The ‘–verbose’ switch directs sortm to tell the user the general actions that it is taking to place the folder in
sorted order.

The ‘–datefield field’ switch tells sortm the name of the field to use when making the date comparison. If
the user has a special field in each message, such as ‘‘BB–Posted:’’ or ‘‘Delivery–Date:’’, then the
‘–datefield’ switch can be used to direct sortm which field to examine.

The ‘–textfield field’ switch causes sortm to sort messages by the specified text field. If this field is ‘‘sub-
ject’’, any leading "re:" is stripped off. In any case, all characters except letters and numbers are stripped
and the resulting strings are sorted datefield–major, textfield–minor, using a case insensitive comparison.

With ‘–textfield field’, if ‘–limit days’ is specified, messages with similar textfields that are dated within
‘days’ of each other appear together. Specifying ‘–nolimit’ makes the limit infinity. With ‘–limit 0’, the
sort is instead made textfield–major, date–minor.

For example, to order a folder by date-major, subject-minor, use:

sortm -textfield subject +folder

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Current–Folder: To find the default current folder

See Also

folder (1)

Defaults

‘+folder’ defaults to the current folder
‘msgs’ defaults to all
‘–datefield date’
‘–notextfield’
‘–noverbose’
‘–nolimit’

Context

If a folder is given, it will become the current folder. If the current message is moved, sortm will preserve
its status as current.

[mh.6] MH.6.8 UCI version

SORTM(1) -78- SORTM(1)

History

Timezones used to be ignored when comparing dates: they aren’t any more.

Messages which were in the folder, but not specified by ‘msgs’, used to be moved to the end of the folder;
now such messages are left untouched.

Sortm sometimes did not preserve the message numbering in a folder (e.g., messages 1, 3, and 5, might
have been renumbered to 1, 2, 3 after sorting). This was a bug, and has been fixed. To compress the mes-
sage numbering in a folder, use ‘‘folder –packO’’ as always.

Bugs

If sortm encounters a message without a date–field, or if the message has a date–field that sortm cannot
parse, then sortm attempts to keep the message in the same relative position. This does not always work.
For instance, if the first message encountered lacks a date which can be parsed, then it will usually be
placed at the end of the messages being sorted.

When sortm complains about a message which it can’t temporally order, it complains about the message
number prior to sorting. It should indicate what the message number will be after sorting.

[mh.6] MH.6.8 UCI version

VMH(1) -79- VMH(1)

NAME

vmh – visual front-end to MH

SYNOPSIS

vmh [–prompt string] [–vmhproc program] [–novmhproc] [switches for vmhproc] [–help]

DESCRIPTION

vmh is a program which implements the server side of the MH window management protocol and uses
curses (3) routines to maintain a split–screen interface to any program which implements the client side of
the protocol. This latter program, called the vmhproc, is specified using the ‘–vmhproc program’ switch.

The upshot of all this is that one can run msh on a display terminal and get a nice visual interface. To do
this, for example, just add the line

mshproc: vmh

to your .mh_profile. (This takes advantage of the fact that msh is the default vmhproc for vmh.)

In order to facilitate things, if the ‘–novmhproc’ switch is given, and vmh can’t run on the user’s terminal,
the vmhproc is run directly without the window management protocol.

After initializing the protocol, vmh prompts the user for a command to be given to the client. Usually, this
results in output being sent to one or more windows. If a output to a window would cause it to scroll, vmh
prompts the user for instructions, roughly permitting the capabilities of less or more (e.g., the ability to
scroll backwards and forwards):

SPACE advance to the next windowful
RETURN * advance to the next line
y * retreat to the previous line
d * advance to the next ten lines
u * retreat to the previous ten lines
g * go to an arbitrary line

(preceed g with the line number)
G * go to the end of the window

(if a line number is given, this acts like ‘g’)
CTRL–L refresh the entire screen
h print a help message
q abort the window

(A ‘*’ indicates that a numeric prefix is meaningful for this command.)

Note that if a command resulted in more than one window’s worth of information being displayed, and you
allow the command which is generating information for the window to gracefully finish (i.e., you don’t use
the ‘q’ command to abort information being sent to the window), then vmh will give you one last change to
peruse the window. This is useful for scrolling back and forth. Just type ‘q’ when you’re done.

To abnormally terminate vmh (without core dump), use <QUIT> (usually CTRL–\). For instance, this does
the ‘‘right’’ thing with bbc and msh.

Files

$HOME/.mh_profile The user profile

[mh.6] MH.6.8 UCI version

VMH(1) -80- VMH(1)

Profile Components

Path: To determine the user’s MH directory

See Also

msh(1)

Defaults

‘–prompt (vmh) ’
‘–vmhproc msh’

Context

None

Bugs

The argument to the ‘–prompt’ switch must be interpreted as a single token by the shell that invokes vmh.
Therefore, one must usually place the argument to this switch inside double–quotes.

At present, there is no way to pass signals (e.g., interrupt, quit) to the client. However, generating QUIT
when vmh is reading a command from the terminal is sufficient to tell the client to go away quickly.

Acts strangely (loses peer or botches window management protocol with peer) on random occasions.

[mh.6] MH.6.8 UCI version

WHATNOW(1) -81- WHATNOW(1)

NAME

whatnow – prompting front-end for send

SYNOPSIS

whatnow [–draftfolder +folder] [–draftmessage msg] [–nodraftfolder] [–editor editor] [–noedit]
[–prompt string] [file] [–help]

DESCRIPTION

Whatnow is the default program that queries the user about the disposition of a composed draft. It is nor-
mally invoked by one of comp, dist, forw, or repl after the initial edit.

When started, the editor is started on the draft (unless ‘–noedit’ is given, in which case the initial edit is
suppressed). Then, whatnow repetitively prompts the user with ‘‘What now?’’ and awaits a response. The
valid responses are:

display to list the message being distributed/replied–to on
the terminal

edit to re–edit using the same editor that was used on the
preceding round unless a profile entry
‘‘<lasteditor>–next: <editor>’’ names an alternate editor

edit <editor> to invoke <editor> for further editing
list to list the draft on the terminal
push to send the message in the background
quit to terminate the session and preserve the draft
quit –delete to terminate, then delete the draft
refile +folder to refile the draft into the given folder
send to send the message
send –watch to cause the delivery process to be monitored
whom to list the addresses that the message will go to
whom –check to list the addresses and verify that they are

acceptable to the transport service

For the edit response, any valid switch to the editor is valid. Similarly, for the send and whom responses,
any valid switch to send (1) and whom (1) commands, respectively, are valid. For the push response, any
valid switch to send (1) is valid (as this merely invokes send with the ‘–push’ option). For the refile
response, any valid switch to the fileproc is valid. For the display and list responses, any valid argument to
the lproc is valid. If any non–switch arguments are present, then the pathname of the draft will be excluded
from the argument list given to the lproc (this is useful for listing another MH message).

See mh–profile (5) for further information about how editors are used by MH. It also discusses how com-
plex envariables can be used to direct whatnow’s actions.

The ‘–prompt string’ switch sets the prompting string for whatnow.

The ‘–draftfolder +folder’ and ‘–draftmessage msg’ switches invoke the MH draft folder facility. This is an
advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for more
information.

Files

$HOME/.mh_profile The user profile
<mh–dir>/draft The draft file

[mh.6] MH.6.8 UCI version

WHATNOW(1) -82- WHATNOW(1)

Profile Components

Path: To determine the user’s MH directory
Draft–Folder: To find the default draft–folder
Editor: To override the default editor
<lasteditor>–next: To name an editor to be used after exit from <lasteditor>
fileproc: Program to refile the message
lproc: Program to list the contents of a message
sendproc: Program to use to send the message
whomproc: Program to determine who a message would go to

See Also

send(1), whom(1)

Defaults

‘–prompt ‘‘What Now? ’’’

Context

None

Bugs

The argument to the ‘–prompt’ switch must be interpreted as a single token by the shell that invokes what-
now. Therefore, one must usually place the argument to this switch inside double–quotes.

If the initial edit fails, whatnow deletes your draft (by renaming it with a leading comma); failure of a later
edit preverves the draft.

If whatnowproc is whatnow, then comp, dist, forw, and repl use a built–in whatnow, and do not actually run
the whatnow program. Hence, if you define your own whatnowproc, don’t call it whatnow since it won’t be
run.

If sendproc is send, then whatnow uses a built–in send, it does not actually run the send program. Hence, if
you define your own sendproc, don’t call it send since whatnow won’t run it.

[mh.6] MH.6.8 UCI version

WHOM(1) -83- WHOM(1)

NAME

whom – report to whom a message would go

SYNOPSIS

whom [–alias aliasfile] [–check] [–nocheck] [–draft] [–draftfolder +folder] [–draftmessage msg]
[–nodraftfolder] [file] [–help]

DESCRIPTION

Whom is used to expand the headers of a message into a set of addresses and optionally verify that those
addresses are deliverable at that time (if ‘–check’ is given).

The ‘–draftfolder +folder’ and ‘–draftmessage msg’ switches invoke the MH draft folder facility. This is an
advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for more
information.

The files specified by the profile entry ‘‘Aliasfile:’’ and any additional alias files given by the ‘–alias
aliasfile’ switch will be read (more than one file, each preceeded by ‘–alias’, can be named). See
mh–alias (5) for more information.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user’s MH directory
Draft–Folder: To find the default draft–folder
Aliasfile: For a default alias file
postproc: Program to post the message

See Also

mh–alias(5), post(8)

Defaults

‘file’ defaults to <mh–dir>/draft
‘–nocheck’
‘–alias /usr/local/lib/mh/MailAliases’

Context

None

Bugs

With the ‘–check’ option, whom makes no guarantees that the addresses listed as being ok are really
deliverable, rather, an address being listed as ok means that at the time that whom was run the address was
thought to be deliverable by the transport service. For local addresses, this is absolute; for network ad-
dresses, it means that the host is known; for uucp addresses, it (often) means that the UUCP network is
available for use.

[mh.6] MH.6.8 UCI version

-84-

MORE DETAILS

This section describes some of the more intense points of the MH system, by expanding
on topics previously discussed. The format presented conforms to the standard form for the
description of UNIX documentation.

MH-ALIAS(5) -85- MH-ALIAS(5)

NAME

mh-alias – alias file for MH message system

SYNOPSIS

any MH command

DESCRIPTION

This describes both MH personal alias files and the (primary) alias file for mail delivery, the file

/usr/local/lib/mh/MailAliases

It does not describe aliases files used by the message transport system. Each line of the alias file has the
format:

alias : address–group
or

alias ; address–group
or

< alias–file
or

; comment

where:

address–group := address–list
| ‘‘<’’ file
| ‘‘=’’ UNIX–group
| ‘‘+’’ UNIX–group
| ‘‘*’’

address–list := address
| address–list, address

Continuation lines in alias files end with ‘\’ followed by the newline character.

Alias–file and file are UNIX file names. UNIX–group is a group name (or number) from /etc/group. An
address is a ‘‘simple’’ Internet–style address. Througout this file, case is ignored, except for alias–file
names.

If the line starts with a ‘<’, then the file named after the ‘<’ is read for more alias definitions. The reading is
done recursively, so a ‘<’ may occur in the beginning of an alias file with the expected results.

If the address–group starts with a ‘<’, then the file named after the ‘<’ is read and its contents are added to
the address–list for the alias.

If the address–group starts with an ‘=’, then the file /etc/group is consulted for the UNIX–group named
after the ‘=’. Each login name occurring as a member of the group is added to the address–list for the alias.

In contrast, if the address–group starts with a ‘+’, then the file /etc/group is consulted to determine the
group–id of the UNIX–group named after the ‘+’. Each login name occurring in the /etc/passwd file whose
group–id is indicated by this group is added to the address–list for the alias.

[mh.6] MH.6.8 UCI version

MH-ALIAS(5) -86- MH-ALIAS(5)

If the address–group is simply ‘*’, then the file /etc/passwd is consulted and all login names with a userid
greater than some magic number (usually 200) are added to the address–list for the alias.

In match, a trailing * on an alias will match just about anything appropriate. (See example below.)

An approximation of the way aliases are resolved at posting time is (it’s not really done this way):

1) Build a list of all addresses from the message to be delivered, eliminating duplicate addresses.

2) If this draft originated on the local host, then for those addresses in the message that have no
host specified, perform alias resolution.

3) For each line in the alias file, compare ‘‘alias’’ against all of the existing addresses. If a match,
remove the matched ‘‘alias’’ from the address list, and add each new address in the address–group
to the address list if it is not already on the list. The alias itself is not usually output, rather the
address–group that the alias maps to is output instead. If ‘‘alias’’ is terminated with a ‘;’ instead
of a ‘:’, then both the ‘‘alias’’ and the address are output in the correct format. (This makes replies
possible since MH aliases and personal aliases are unknown to the mail transport system.)

Since the alias file is read line by line, forward references work, but backward references are not recog-
nized, thus, there is no recursion.

Example:
</usr/local/lib/mh/BBoardAliases
sgroup: fred, fear, freida
b-people: Blind List: bill, betty;
fred: frated@UCI
UNIX–committee: <unix.aliases
staff: =staff
wheels: +wheel
everyone: *
news.*: news

The first line says that more aliases should immediately be read from the file
/usr/local/lib/mh/BBoardAliases. Following this, ‘‘fred’’ is defined as an alias for ‘‘frated@UCI’’, and
‘‘sgroup’’ is defined as an alias for the three names ‘‘frated@UCI’’, ’’fear’’, and ’’freida’’.

The alias ‘‘b-people’’ is a blind list which includes the addresses ‘‘bill’’ and ‘‘betty’’; the message will be
delieved to those addresses, but the message header will show only ‘‘Blind List: ;’’ (not the addresses).

Next, the definition of ‘‘UNIX–committee’’ is given by reading the file unix.aliases in the users MH direc-
tory, ‘‘staff’’ is defined as all users who are listed as members of the group ‘‘staff’’ in the /etc/group file,
and ‘‘wheels’’ is defined as all users whose group–id in /etc/passwd is equivalent to the ‘‘wheel’’ group.

Finally, ‘‘everyone’’ is defined as all users with a user–id in /etc/passwd greater than 200, and all aliases of
the form ‘‘news.<anything>’’ are defined to be ‘‘news’’.

The key thing to understand about aliasing in MH is that aliases in MH alias files are expanded into the
headers of messages posted. This aliasing occurs first, at posting time, without the knowledge of the mes-
sage transport system. In contrast, once the message transport system is given a message to deliver to a list
of addresses, for each address that appears to be local, a system–wide alias file is consulted. These aliases
are NOT expanded into the headers of messages delivered.

[mh.6] MH.6.8 UCI version

MH-ALIAS(5) -87- MH-ALIAS(5)

Helpful Hints

To use aliasing in MH quickly, do the following:

First, in your .mh_profile, choose a name for your alias file, say ‘‘aliases’’, and add the line:

Aliasfile: aliases

Second, create the file ‘‘aliases’’ in your MH directory.

Third, start adding aliases to your ‘‘aliases’’ file as appropriate.

Files

/usr/local/lib/mh/MailAliases Primary alias file

Profile Components

Aliasfile: For a default alias file

See Also

ali(1), send(1), whom(1), group(5), passwd(5), conflict(8), post(8)

Defaults

None

Context

None

History

In previous releases of MH, only a single, system–wide mh–alias file was supported. This led to a number
of problems, since only mail–system administrators were capable of (un)defining aliases. Hence, the se-
mantics of mh–alias were extended to support personal alias files. Users of MH no longer need to bother
mail–system administrators for keeping information in the system–wide alias file, as each MH user can
create/modify/remove aliases at will from any number of personal files.

Bugs

Although the forward-referencing semantics of mh–alias files prevent recursion, the ‘‘< alias–file’’ com-
mand may defeat this. Since the number of file descriptors is finite (and very limited), such infinite recur-
sion will terminate with a meaningless diagnostic when all the fds are used up.

Forward references do not work correctly inside blind lists.

[mh.6] MH.6.8 UCI version

MH-FORMAT(5) -88- MH-FORMAT(5)

NAME

mh-format – format file for MH message system

SYNOPSIS

some MH commands

DESCRIPTION

Several MH commands utilize either a format string or a format file during their execution. For example,
scan (1) uses a format string which directs it how to generate the scan listing for each message; repl (1)
uses a format file which directs it how to generate the reply to a message, and so on.

Format strings are designed to be efficiently parsed by MH which means they are not necessarily simple to
write and understand. This means that novice, casual, or even advanced users of MH should not have to
deal with them. Some canned scan listing formats are in /usr/local/lib/mh/scan.time,
/usr/local/lib/mh/scan.size, and /usr/local/lib/mh/scan.timely. Look in /usr/local/lib/mh for other scan and
repl format files which may have been written at your site.

It suffices to have your local MH expert actually write new format commands or modify existing ones.
This manual section explains how to do that. Note: familiarity with the C printf routine is assumed.

A format string consists of ordinary text, and special multi-character escape sequences which begin with
‘%’. When specifying a format string, the usual C backslash characters are honored: ‘\b’, ‘\f’, ‘\n’, ‘\r’, and
‘\t’. Continuation lines in format files end with ‘\’ followed by the newline character. There are three types
of escape sequences: header components, built-in functions, and flow control.

A component escape is specified as ‘%{componentP}’, and exists for each header found in the message
being processed. For example ‘%{date}’ refers to the ‘‘Date:’’ field of the appropriate message. All com-
ponent escapes have a string value. Normally, component values are compressed by converting any control
characters (tab and newline included) to spaces, then eliding any leading or multiple spaces. However,
commands may give different interpretations to some component escapes; be sure to refer to each
command’s manual entry for complete details.

A function escape is specified as ‘%(functionP)’. All functions are built-in, and most have a string or
numeric value.

Control-flow escapes

A control escape is one of: ‘%<’, ‘%?’, ‘%|’, or ‘%>’. These are combined into the conditional execution
construct:

%<condition
format text 1

%?condition2
format text 2

%?condition3
format text 3

...
%|

format text N
%>

[mh.6] MH.6.8 UCI version

MH-FORMAT(5) -89- MH-FORMAT(5)

Extra white space is shown here only for clarity. These constructs may be nested without ambiguity. They
form a general if–elseif–else–endif block where only one of the format text segments is interpreted.

The ‘%<’ and ‘%?’ control escapes causes a condition to be evaluated. This condition may be either a com-
ponent or a function. The four constructs have the following syntax:

%<{component}
%<(function)
%?{component}
%?(function)

These control escapes test whether the function or component value is non-zero (for integer-valued
escapes), or non-empty (for string-valued escapes).

If this test evaulates true, then the format text up to the next corresponding control escape (one of ‘%|’,
‘%?’, or ‘%>’) is interpreted normally. Next, all format text (if any) up to the corresponding ‘%>’ control
escape is skipped. The ‘%>’ control escape is not interpreted; normal interpretation resumes after the ‘%>’
escape.

If the test evaluates false, however, then the format text up to the next corresponding control escape (again,
one of ‘%|’, ‘%?’, or ‘%>’) is skipped, instead of being interpreted. If the control escape encountered was
‘%?’, then the condition associated with that control escape is evaluated, and interpretation proceeds after
that test as described in the previous paragraph. If the control escape encountered was ‘%|’, then the format
text up to the corresponding ‘%>’ escape is interpreted normally. As above, the ‘%>’ escape is not inter-
preted and normal interpretation resumes after the ‘%>’ escape.

The ‘%?’ control escape and its following format text is optional, and may be included zero or more times.
The ‘%|’ control escape and its following format text is also optional, and may be included zero or one
times.

Function escapes

Most functions expect an argument of a particular type:

Argument Description Example Syntax
literal A literal number, %(func 1234)

or string %(func text string)
comp Any header component %(funcP{in-reply-toP})
date A date component %(funcP{dateP})
addr An address component %(funcP{fromP})
expr An optional component, %(funcP(func2P))

function or control, %(func %<{reply-toP}%|%{fromP}%>)
perhaps nested %(funcP(func2P{compP}))

The types date and addr have the same syntax as comp, but require that the header component be a date
string, or address string, respectively.

All arguments except those of type expr are required. For the expr argument type, the leading ‘%’ must be
omitted for component and function escape arguments, and must be present (with a leading space) for con-
trol escape arguments.

[mh.6] MH.6.8 UCI version

MH-FORMAT(5) -90- MH-FORMAT(5)

The evaluation of format strings is based on a simple machine with an integer register num, and a text string
register str. When a function escape is processed, if it accepts an optional expr argument which is not
present, it reads the current value of either num or str as appropriate.

Return values

Component escapes write the value of their message header in str. Function escapes write their return value
in num for functions returning integer or boolean values, and in str for functions returning string values.
(The boolean type is a subset of integers with usual values 0=false and 1=true.) Control escapes return a
boolean value, and set num.

All component escapes, and those function escapes which return an integer or string value, pass this value
back to their caller in addition to setting str or num. These escapes will print out this value unless called as
part of an argument to another escape sequence. Escapes which return a boolean value do pass this value
back to their caller in num, but will never print out the value.

Function Argument Return Description
msg integer message number
cur integer message is current
size integer size of message
strlen integer length of str
width integer output buffer size in bytes
charleft integer bytes left in output buffer
timenow integer seconds since the UNIX epoch
me string the user’s mailbox
eq literal boolean num == arg
ne literal boolean num != arg
gt literal boolean num > arg
match literal boolean str contains arg
amatch literal boolean str starts with arg
plus literal integer arg plus num
minus literal integer arg minus num
divide literal integer num divided by arg
modulo literal integer num modulo arg
num literal integer Set num to arg
lit literal string Set str to arg
getenv literal string Set str to environment value of arg
profile literal string Set str to profile component arg value
nonzero expr boolean num is non-zero
zero expr boolean num is zero
null expr boolean str is empty
nonnull expr boolean str is non-empty
void expr Set str or num
comp comp string Set str to component text
compval comp integer num set to ‘‘atoi(compP)’’
trim expr trim trailing white-space from str
putstr expr print str
putstrf expr print str in a fixed width
putnum expr print num
putnumf expr print num in a fixed width

[mh.6] MH.6.8 UCI version

MH-FORMAT(5) -91- MH-FORMAT(5)

These functions require a date component as an argument:

Function Argument Return Description
sec date integer seconds of the minute
min date integer minutes of the hour
hour date integer hours of the day (0-23)
wday date integer day of the week (Sun=0)
day date string day of the week (abbrev.)
weekday date string day of the week
sday date integer day of the week known?

(0=implicit,–1=unknown)
mday date integer day of the month
yday date integer day of the year
mon date integer month of the year
month date string month of the year (abbrev.)
lmonth date string month of the year
year date integer year (may be > 100)
zone date integer timezone in hours
tzone date string timezone string
szone date integer timezone explicit?

(0=implicit,–1=unknown)
date2local date coerce date to local timezone
date2gmt date coerce date to GMT
dst date integer daylight savings in effect?
clock date integer seconds since the UNIX epoch
rclock date integer seconds prior to current time
tws date string official 822 rendering
pretty date string user-friendly rendering
nodate date integer str not a date string

These functions require an address component as an argument. The return value of functions noted with ‘*’
pertain only to the first address present in the header component.

Function Argument Return Description
proper addr string official 822 rendering
friendly addr string user-friendly rendering
addr addr string mbox@host or host!mbox rendering*
pers addr string the personal name*
note addr string commentary text*
mbox addr string the local mailbox*
mymbox addr integer the user’s addresses? (0=no,1=yes)
host addr string the host domain*
nohost addr integer no host was present*
type addr integer host type* (0=local,1=network,

–1=uucp,2=unknown)
path addr string any leading host route*
ingrp addr integer address was inside a group*
gname addr string name of group*
formataddr expr append arg to str as a

(comma separated) address list
putaddr literal print str address list with

arg as optional label;

[mh.6] MH.6.8 UCI version

MH-FORMAT(5) -92- MH-FORMAT(5)

get line width from num

When escapes are nested, evaluation is done from inner-most to outer-most. The outer-most escape must
begin with ‘%’; the inner escapes must not. For example,

%<(mymbox{from}) To: %{to}%>

writes the value of the header component ‘‘From:’’ to strP; then (mymboxP) reads str and writes its result to
num; then the control escape evaluates num. If num is non-zero, the string ‘‘To: ’’ is printed followed by
the value of the header component ‘‘To:’’.

A minor explanation of (mymboxP{compP}) is in order. In general, it checks each of the addresses in the
header component ‘‘comp’’ against the user’s mailbox name and any Alternate-Mailboxes. It returns true if
any address matches, however, it also returns true if the ‘‘comp’’ header is not present in the message. If
needed, the (nullP) function can be used to explicitly test for this condition.

When a function or component escape is interpreted and the result will be immediately printed, an optional
field width can be specified to print the field in exactly a given number of characters. For example, a
numeric escape like %4(sizeP) will print at most 4 digits of the message size; overflow will be indicated by a
‘?’ in the first position (like ‘?234’). A string escape like %4(meP) will print the first 4 characters and trun-
cate at the end. Short fields are padded at the right with the fill character (normally, a blank). If the field
width argument begins with a leading zero, then the fill character is set to a zero.

As above, the functions (putnumfP) and (putstrfP) print their result in exactly the number of characters
specified by their leading field width argument. For example, %06(putnumfP(sizeP)) will print the message
size in a field six characters wide filled with leading zeros; %14(putstrfP{fromP}) will print the ‘‘From:’’
header component in fourteen characters with trailing spaces added as needed. For putstrf, using a negative
value for the field width causes right-justification of the string within the field, with padding on the left up
to the field width. The functions (putnumP) and (putstrP) print their result in the minimum number of charac-
ters required, and ignore any leading field width argument.

The available output width is kept in an internal register; any output past this width will be truncated.

Comments may be inserted in most places where a function argument is not expected. A comment begins
with ‘%;’ and ends with a (non-escaped) newline.

With all this in mind, here’s the default format string for scan. It’s been divided into several pieces for rea-
dability. The first part is:

%4(msg)%<(cur)+%| %>%<{replied}–%?{encrypted}E%| %>

which says that the message number should be printed in four digits, if the message is the current message
then a ‘+’ else a space should be printed, and if a ‘‘Replied:’’ field is present then a ‘–’ else if an
‘‘Encrypted:’’ field is present then an ‘E’ otherwise a space should be printed. Next:

%02(mon{date})/%02(mday{date})

the month and date are printed in two digits (zero filled) separated by a slash. Next,

%<{date} %|*>

If a ‘‘Date:’’ field was present, then a space is printed, otherwise a ‘*’. Next,

[mh.6] MH.6.8 UCI version

MH-FORMAT(5) -93- MH-FORMAT(5)

%<(mymbox{from})%<{to}To:%14(friendly{to})%>%>

if the message is from me, and there is a ‘‘To:’’ header, print ‘To:’ followed by a ‘‘user-friendly’’ rendering
of the first address in the ‘‘To:’’ field. Continuing,

%<(zero)%17(friendly{from})%>

if either of the above two tests failed, then the ‘‘From:’’ address is printed in a ‘‘user-friendly’’ format.
And finally,

%{subject}%<{body}<<%{body}%>

the subject and initial body (if any) are printed.

For a more complicated example, next consider the default replcomps format file.

%(lit)%(formataddr %<{reply-to}

This clears str and formats the ‘‘Reply-To:’’ header if present. If not present, the else-if clause is executed.

%?{from}%?{sender}%?{return-path}%>)\

This formats the ‘‘From:’’, ‘‘Sender:’’ and ‘‘Return-Path:’’ headers, stopping as soon as one of them is
present. Next:

%<(nonnull)%(void(width))%(putaddr To:)\n%>\

If the formataddr result is non-null, it is printed as an address (with line folding if needed) in a field width
wide with a leading label of ‘‘To: ’’.

%(lit)%(formataddr{to})%(formataddr{cc})%(formataddr(me))\

str is cleared, and the ‘‘To:’’ and ‘‘Cc:’’ headers, along with the user’s address (depending on what was
specified with the ‘‘–cc’’ switch to replP) are formatted.

%<(nonnull)%(void(width))%(putaddr cc:)\n%>\

If the result is non-null, it is printed as above with a leading label of ‘‘cc: ’’.

%<{fcc}Fcc: %{fcc}\n%>\

If a ‘‘–fcc folder’’ switch was given to repl (see repl (1) for more details about %{fccP}), an ‘‘Fcc:’’ header
is output.

%<{subject}Subject: Re: %{subject}\n%>\

If a subject component was present, a suitable reply subject is output.

%<{date}In-reply-to: Your message of "\
%<(nodate{date})%{date}%|%(pretty{date})%>."%<{message-id}

%{message-id}%>\n%>\
––––––––

[mh.6] MH.6.8 UCI version

MH-FORMAT(5) -94- MH-FORMAT(5)

If a date component was present, an ‘‘In-Reply-To:’’ header is output with the preface ‘‘Your message of
’’. If the date was parseable, it is output in a user-friendly format, otherwise it is output as-is. The
message-id is included if present. As with all plain-text, the row of dashes are output as-is.

This last part is a good example for a little more elaboration. Here’s that part again in pseudo-code:

if (comp_exists(date)) then
print (‘‘In-reply-to: Your message of \‘‘’’)
if (not_date_string(date.value) then

print (date.value)
else

print (pretty(date.value))
endif
print (‘‘\’’’’)
if (comp_exists(message-id)) then

print (‘‘\n\t’’)
print (message-id.value)

endif
print (‘‘\n’’)

endif

Although this seems complicated, in point of fact, this method is flexible enough to extract individual fields
and print them in any format the user desires.

Files

None

Profile Components

None

See Also

scan(1), repl(1), ap(8), dp(8)

Defaults

None

Context

None

History

This software was contributed for MH 6.3. Prior to this, output format specifications were much easier to
write, but considerably less flexible.

Bugs

On hosts where MH was configured with the BERK option, address parsing is not enabled.

[mh.6] MH.6.8 UCI version

MH-MAIL(5) -95- MH-MAIL(5)

NAME

mh-mail – message format for MH message system

SYNOPSIS

any MH command

DESCRIPTION

MH processes messages in a particular format. It should be noted that although neither Bell nor Berkeley
mailers produce message files in the format that MH prefers, MH can read message files in that antiquated
format.

Each user possesses a mail drop box which initially receives all messages processed by post (8). Inc (1)
will read from that drop box and incorporate the new messages found there into the user’s own mail folders
(typically ‘+inbox’). The mail drop box consists of one or more messages.

Messages are expected to consist of lines of text. Graphics and binary data are not handled. No data
compression is accepted. All text is clear ASCII 7-bit data.

The general ‘‘memo’’ framework of RFC–822 is used. A message consists of a block of information in a
rigid format, followed by general text with no specified format. The rigidly formatted first part of a mes-
sage is called the header, and the free-format portion is called the body. The header must always exist, but
the body is optional. These parts are separated by an empty line, i.e., two consecutive newline characters.
Within MH, the header and body may be separated by a line consisting of dashes:

To:
cc:
Subject:

The header is composed of one or more header items. Each header item can be viewed as a single logical
line of ASCII characters. If the text of a header item extends across several real lines, the continuation lines
are indicated by leading spaces or tabs.

Each header item is called a component and is composed of a keyword or name, along with associated text.
The keyword begins at the left margin, may NOT contain spaces or tabs, may not exceed 63 characters (as
specified by RFC–822), and is terminated by a colon (‘:’). Certain components (as identified by their key-
words) must follow rigidly defined formats in their text portions.

The text for most formatted components (e.g., ‘‘Date:’’ and ‘‘Message–Id:’’) is produced automatically.
The only ones entered by the user are address fields such as ‘‘To:’’, ‘‘cc:’’, etc. Internet addresses are
assigned mailbox names and host computer specifications. The rough format is ‘‘local@domain’’, such as
‘‘MH@UCI’’, or ‘‘MH@UCI–ICSA.ARPA’’. Multiple addresses are separated by commas. A missing
host/domain is assumed to be the local host/domain.

As mentioned above, a blank line (or a line of dashes) signals that all following text up to the end of the file
is the body. No formatting is expected or enforced within the body.

Following is a list of header components that are considered meaningful to various MH programs.
Date:

Added by post (8), contains date and time of the message’s entry into the transport system.

[mh.6] MH.6.8 UCI version

MH-MAIL(5) -96- MH-MAIL(5)

From:
Added by post (8), contains the address of the author or authors (may be more than one if a
‘‘Sender:’’ field is present). Replies are typically directed to addresses in the ‘‘Reply–To:’’ or
‘‘From:’’ field (the former has precedence if present).

Sender:
Added by post (8) in the event that the message already has a ‘‘From:’’ line. This line contains
the address of the actual sender. Replies are never sent to addresses in the ‘‘Sender:’’ field.

To:
Contains addresses of primary recipients.

cc:
Contains addresses of secondary recipients.

Bcc:
Still more recipients. However, the ‘‘Bcc:’’ line is not copied onto the message as delivered, so
these recipients are not listed. MH uses an encapsulation method for blind copies, see send (1).

Fcc:
Causes post (8) to copy the message into the specified folder for the sender, if the message was
successfully given to the transport system.

Message–ID:
A unique message identifier added by post (8) if the ‘–msgid’ flag is set.

Subject:
Sender’s commentary. It is displayed by scan (1).

In–Reply–To:
A commentary line added by repl (1) when replying to a message.

Resent–Date:
Added when redistributing a message by post (8).

Resent–From:
Added when redistributing a message by post (8).

Resent–To:
New recipients for a message resent by dist (1).

Resent–cc:
Still more recipients. See ‘‘cc:’’ and ‘‘Resent–To:’’.

Resent–Bcc:
Even more recipients. See ‘‘Bcc:’’ and ‘‘Resent–To:’’.

Resent–Fcc:
Copy resent message into a folder. See ‘‘Fcc:’’ and ‘‘Resent–To:’’.

Resent–Message–Id:
A unique identifier glued on by post (8) if the ‘–msgid’ flag is set. See ‘‘Message–Id:’’ and

[mh.6] MH.6.8 UCI version

MH-MAIL(5) -97- MH-MAIL(5)

‘‘Resent–To:’’.

Resent:
Annotation for dist (1) under the ‘–annotate’ option.

Forwarded:
Annotation for forw (1) under the ‘–annotate’ option.

Replied:
Annotation for repl (1) under the ‘–annotate’ option.

Files

/usr/spool/mail/$USER Location of mail drop

Profile Components

None

See Also

Standard for the Format of ARPA Internet Text Messages (aka RFC–822)

Defaults

None

Context

None

[mh.6] MH.6.8 UCI version

MH-PROFILE(5) -98- MH-PROFILE(5)

NAME

mh-profile – user profile customization for MH message handler

SYNOPSIS

.mh_profile

DESCRIPTION

Each user of MH is expected to have a file named .mh_profile in his or her home directory. This file con-
tains a set of user parameters used by some or all of the MH family of programs. Each line of the file is of
the format

profile–component: value

The possible profile components are exemplified below. Only ‘Path:’ is mandatory. The others are
optional; some have default values if they are not present. In the notation used below, (profile, default)
indicates whether the information is kept in the user’s MH profile or MH context, and indicates what the
default value is.

Path: Mail
Locates MH transactions in directory ‘‘Mail’’. (profile, no default)

context: context
Declares the location of the MH context file, see the HISTORY section below. (profile,
default: <mh–dir>/context)

Current–Folder: inbox
Keeps track of the current open folder. (context, default: folder specified by ‘‘Inbox’’)

Inbox: inbox
Defines the name of your inbox. (profile, default: inbox)

Previous–Sequence: pseq
Names the sequences which should be defined as the ‘msgs’ or ‘msg’ argument given to
the program. If not present, or empty, no sequences are defined. Otherwise, for each
name given, the sequence is first zero’d and then each message is added to the sequence.
(profile, no default)

Sequence–Negation: not
Defines the string which, when prefixed to a sequence name, negates that sequence.
Hence, ‘‘notseen’’ means all those messages that are not a member of the sequence
‘‘seen’’. (profile, no default)

Unseen–Sequence: unseen
Names the sequences which should be defined as those messages recently incorporated by
inc. Show knows to remove messages from this sequence once it thinks they have been
seen. If not present, or empty, no sequences are defined. Otherwise, each message is
added to each sequence name given. (profile, no default)

mh–sequences: .mh_sequences
The name of the file in each folder which defines public sequences. To disable the use of
public sequences, leave the value portion of this entry blank. (profile, default:

[mh.6] MH.6.8 UCI version

MH-PROFILE(5) -99- MH-PROFILE(5)

.mh_sequences)

atr–seq–folder: 172 178–181 212
Keeps track of the private sequence called seq in the specified folder. (context, no
default)

Editor: /usr/ucb/ex
Defines editor to be used by comp (1), dist (1), forw (1), and repl (1). (profile, default:
prompter)

Msg–Protect: 644
Defines octal protection bits for message files. See chmod (1) for an explanation of the
octal number. (profile, default: 0644)

Folder–Protect: 711
Defines protection bits for folder directories. (profile, default: 0711)

program: default switches
Sets default switches to be used whenever the mh program program is invoked. For
example, one could override the Editor: profile component when replying to messages by
adding a component such as:

repl: –editor /bin/ed
(profile, no defaults)

lasteditor–next: nexteditor
Names ‘‘nexteditor’’ to be the default editor after using ‘‘lasteditor’’. This takes effect at
‘‘What now?’’ level in comp, dist, forw, and repl. After editing the draft with ‘‘lastedi-
tor’’, the default editor is set to be ‘‘nexteditor’’. If the user types ‘‘edit’’ without any
arguments to ‘‘What now?’’, then ‘‘nexteditor’’ is used. (profile, no default)

bboards: system
Tells bbc which BBoards you are interested in. (profile, default: system)

Folder–Stack: folders
The contents of the folder-stack for the folder command. (context, no default)

mhe:
If present, tells inc to compose an MHE auditfile in addition to its other tasks. MHE is
Brian Reid’s Emacs front-end for MH. An early version is supplied with the mh.6 distri-
bution. (profile, no default)

Alternate–Mailboxes: mh@uci–750a, bug-mh*
Tells repl and scan which addresses are really yours. In this way, repl knows which
addresses should be included in the reply, and scan knows if the message really ori-
ginated from you. Addresses must be separated by a comma, and the hostnames listed
should be the ‘‘official’’ hostnames for the mailboxes you indicate, as local nicknames
for hosts are not replaced with their official site names. For each address, if a host is not
given, then that address on any host is considered to be you. In addition, an asterisk (‘*’)
may appear at either or both ends of the mailbox and host to indicate wild-card matching.
(profile, default: your user-id)

Aliasfile: aliases other-alias

[mh.6] MH.6.8 UCI version

MH-PROFILE(5) -100- MH-PROFILE(5)

Indicates aliases files for ali, whom, and send. This may be used instead of the ‘–alias
file’ switch. (profile, no default)

Draft–Folder: drafts
Indicates a default draft folder for comp, dist, forw, and repl. (profile, no default)

digest–issue–list: 1
Tells forw the last issue of the last volume sent for the digest list. (context, no default)

digest–volume–list: 1
Tells forw the last volume sent for the digest list. (context, no default)

MailDrop: .mail
Tells inc your maildrop, if different from the default. This is superceded by the MAIL-
DROP envariable. (profile, default: /usr/spool/mail/$USER)

Signature: RAND MH System (agent: Marshall Rose)
Tells send your mail signature. This is superceded by the SIGNATURE envariable. If
SIGNATURE is not set and this profile entry is not present, the ‘‘gcos’’ field of the
/etc/passwd file will be used; otherwise, on hosts where MH was configured with the UCI
option, the file $HOME/.signature is consulted. Your signature will be added to the
address send puts in the ‘‘From:’’ header; do not include an address in the signature text.
(profile, no default)

The following profile elements are used whenever an MH program invokes some other program such as
more (1). The .mh_profile can be used to select alternate programs if the user wishes. The default values
are given in the examples.

fileproc: /usr/local/refile
incproc: /usr/local/inc
installproc: /usr/local/lib/mh/install–mh
lproc: /usr/ucb/more
mailproc: /usr/local/mhmail
mhlproc: /usr/local/lib/mh/mhl
moreproc: /usr/ucb/more
mshproc: /usr/local/msh
packproc: /usr/local/packf
postproc: /usr/local/lib/mh/post
rmmproc: none
rmfproc: /usr/local/rmf
sendproc: /usr/local/send
showproc: /usr/ucb/more
whatnowproc: /usr/local/whatnow
whomproc: /usr/local/whom

If you define the envariable MH, you can specify a profile other than .mh_profile to be read by the MH pro-
grams that you invoke. If the value of MH is not absolute, (i.e., does not begin with a /), it will be
presumed to start from the current working directory. This is one of the very few exceptions in MH where
non-absolute pathnames are not considered relative to the user’s MH directory.

Similarly, if you define the envariable MHCONTEXT, you can specify a context other than the normal
context file (as specified in the MH profile). As always, unless the value of MHCONTEXT is absolute, it

[mh.6] MH.6.8 UCI version

MH-PROFILE(5) -101- MH-PROFILE(5)

will be presumed to start from your MH directory.

MH programs also support other envariables:

MAILDROP : tells inc the default maildrop
This supercedes the ‘‘MailDrop:’’ profile entry.

SIGNATURE : tells send and post your mail signature
This supercedes the ‘‘Signature:’’ profile entry.

HOME : tells all MH programs your home directory

SHELL : tells bbl the default shell to run

TERM : tells MH your terminal type
The TERMCAP envariable is also consulted. In particular, these tell scan and mhl how to clear
your terminal, and how many columns wide your terminal is. They also tell mhl how many lines
long your terminal screen is.

editalt : the alternate message
This is set by dist and repl during edit sessions so you can peruse the message being distributed or
replied to. The message is also available through a link called ‘‘@’’ in the current directory if
your current working directory and the folder the message lives in are on the same UNIX filesys-
tem.

mhdraft : the path to the working draft
This is set by comp, dist, forw, and repl to tell the whatnowproc which file to ask ‘‘What now?’’
questions about. In addition, dist, forw, and repl set mhfolder if appropriate. Further, dist and
repl set mhaltmsg to tell the whatnowproc about an alternate message associated with the draft
(the message being distributed or replied to), and dist sets mhdist to tell the whatnowproc that
message re-distribution is occurring. Also, mheditor is set to tell the whatnowproc the user’s
choice of editor (unless overridden by ‘–noedit’). Similarly, mhuse may be set by comp. Finally,
mhmessages is set by dist, forw, and repl if annotations are to occur (along with mhannotate, and
mhinplace). It’s amazing all the information that has to get passed via envariables to make the
‘‘What now?’’ interface look squeaky clean to the MH user, isn’t it? The reason for all this is that
the MH user can select any program as the whatnowproc, including one of the standard shells. As
a result, it’s not possible to pass information via an argument list.
If the WHATNOW option was set during MH configuration (type ‘–help’ to an MH command to
find out), and if this envariable is set, if the commands refile, send, show, or whom are not given
any ‘msgs’ arguments, then they will default to using the file indicated by mhdraft. This is useful
for getting the default behavior supplied by the default whatnowproc.

mhfolder : the folder containing the alternate message
This is set by dist and repl during edit sessions so you can peruse other messages in the current
folder besides the one being distributed or replied to. The mhfolder envariable is also set by
show, prev, and next for use by mhl.

MHBBRC :
If you define the envariable MHBBRC, you can specify a BBoards information file other than
.bbrc to be read by bbc. If the value of MHBBRC is not absolute, (i.e., does not begin with a /),
it will be presumed to start from the current working directory.

[mh.6] MH.6.8 UCI version

MH-PROFILE(5) -102- MH-PROFILE(5)

MHFD :
If the OVERHEAD option was set during MH configuration (type ‘–help’ to an MH command to
find out), then if this envariable is set, MH considers it to be the number of a file descriptor which
is opened, read-only to the MH profile. Similarly, if the envariable MHCONTEXTFD is set, this
is the number of a file descriptor which is opened read-only to the MH context. This feature of
MH is experimental, and is used to examine possible speed improvements for MH startup. Note
that these envariables must be set and non-empty to enable this feature. However, if OVERHEAD
is enabled during MH configuration, then when MH programs call other MH programs, this
scheme is used. These file descriptors are not closed throughout the execution of the MH program,
so children may take advantage of this. This approach is thought to be completely safe and does
result in some performance enhancements.

Files

$HOME/.mh_profile The user profile
or $MH Rather than the standard profile
<mh–dir>/context The user context
or $CONTEXT Rather than the standard context
<folder>/.mh_sequences Public sequences for <folder>

Profile Components

All

See Also

mh(1), environ(5), mh-sequence(5)

Defaults

None

Context

All

History

In previous versions of MH, the current-message value of a writable folder was kept in a file called ‘‘cur’’
in the folder itself. In mh.3, the .mh_profile contained the current-message values for all folders, regardless
of their writability.

In all versions of MH since mh.4, the .mh_profile contains only static information, which MH programs will
NOT update. Changes in context are made to the context file kept in the users MH directory. This in-
cludes, but is not limited to: the ‘‘Current–Folder’’ entry and all private sequence information. Public se-
quence information is kept in a file called .mh_sequences in each folder.

To convert from the format used in releases of MH prior to the format used in the mh.4 release, install–mh
should be invoked with the ‘–compat’ switch. This generally happens automatically on MH systems gen-
erated with the ‘‘COMPAT’’ option during MH configuration.

The .mh_profile may override the path of the context file, by specifying a ‘‘context’’ entry (this must be in
lower-case). If the entry is not absolute (does not start with a /), then it is interpreted relative to the user’s
MH directory. As a result, you can actually have more than one set of private sequences by using different
context files.

[mh.6] MH.6.8 UCI version

MH-PROFILE(5) -103- MH-PROFILE(5)

Bugs

The shell quoting conventions are not available in the .mh_profile. Each token is separated by whitespace.

There is some question as to what kind of arguments should be placed in the profile as options. In order to
provide a clear answer, recall command line semantics of all MH programs: conflicting switches (e.g.,
‘–header and ‘–noheader’) may occur more than one time on the command line, with the last switch taking
effect. Other arguments, such as message sequences, filenames and folders, are always remembered on the
invocation line and are not superseded by following arguments of the same type. Hence, it is safe to place
only switches (and their arguments) in the profile.

If one finds that an MH program is being invoked again and again with the same arguments, and those argu-
ments aren’t switches, then there are a few possible solutions to this problem. The first is to create a (soft)
link in your $HOME/bin directory to the MH program of your choice. By giving this link a different name,
you can create a new entry in your profile and use an alternate set of defaults for the MH command. Simi-
larly, you could create a small shell script which called the MH program of your choice with an alternate set
of invocation line switches (using links and an alternate profile entry is preferable to this solution).

Finally, the csh user could create an alias for the command of the form:

alias cmd ’cmd arg1 arg2 ...’

In this way, the user can avoid lengthy type-in to the shell, and still give MH commands safely. (Recall that
some MH commands invoke others, and that in all cases, the profile is read, meaning that aliases are disre-
garded beyond an initial command invocation)

[mh.6] MH.6.8 UCI version

MH-SEQUENCE(5) -104- MH-SEQUENCE(5)

NAME

mh-sequence – sequence specification for MH message system

SYNOPSIS

most MH commands

DESCRIPTION

Most MH commands accept a ‘msg’ or ‘msgs’ specification, where ‘msg’ indicates one message and ‘msgs’
indicates one or more messages. To designate a message, you may use either its number (e.g., 1, 10, 234)
or one of these ‘‘reserved’’ message names:

Name Description
first the first message in the folder
last the last message in the folder
cur the most recently accessed message
prev the message numerically preceding ‘‘cur’’
next the message numerically following ‘‘cur’’

In commands that take a ‘msg’ argument, the default is ‘‘cur’’. As a shorthand, ‘‘.’’ is equivalent to ‘‘cur’’.

For example: In a folder containing five messages numbered 5, 10, 94, 177 and 325, ‘‘first’’ is 5 and ‘‘last’’
is 325. If ‘‘cur’’ is 94, then ‘‘prev’’ is 10 and ‘‘next’’ is 177.

The word ‘msgs’ indicates that one or more messages may be specified. Such a specification consists of
one message designation or of several message designations separated by spaces. A message designation
consists either of a message name as defined above, or a message range.

A message range is specified as ‘‘name1–name2’’ or ‘‘name:n’’, where ‘name’, ‘name1’ and ‘name2’ are
message names, and ‘n’ is an integer.

The specification ‘‘name1–name2’’ designates all currently-existing messages from ‘name1’ to ‘name2’
inclusive. The message name ‘‘all’’ is a shorthand for the message range ‘‘first–last’’.

The specification ‘‘name:n’’ designates up to ‘n’ messages. These messages start with ‘name’ if ‘name’ is
a message number or one of the reserved names ‘‘first’’ ‘‘cur’’, or ‘‘next’’, The messages end with ‘name’
if ‘name’ is ‘‘prev’’ or ‘‘last’’. The interpretation of ‘n’ may be overridden by preceding ‘n’ with a plus or
minus sign; ‘+n’ always means up to ‘n’ messages starting with ‘name’, and ‘–n’ always means up to ‘n’
messages ending with ‘name’.

In commands which accept a ‘msgs’ argument, the default is either ‘‘cur’’ or ‘‘all’’, depending on which
makes more sense for each command (see the individual man pages for details). Repeated specifications of
the same message have the same effect as a single specification of the message.

User–Defined Message Sequences

In addition to the ‘‘reserved’’ (pre-defined) message names given above, MH supports user-defined
sequence names. User-defined sequences allow the MH user a tremendous amount of power in dealing
with groups of messages in the same folder by allowing the user to bind a group of messages to a meaning-
ful symbolic name.

[mh.6] MH.6.8 UCI version

MH-SEQUENCE(5) -105- MH-SEQUENCE(5)

The name used to denote a message sequence must consist of an alphabetic character followed by zero or
more alphanumeric characters, and can not be one of the ‘‘reserved’’ message names above. After defining
a sequence, it can be used wherever an MH command expects a ‘msg’ or ‘msgs’ argument.

Some forms of message ranges are allowed with user-defined sequences. The specification ‘‘name:n’’ may
be used, and it designates up to the first ‘n’ messages (or last ‘n’ messages for ‘–n’) which are elements of
the user-defined sequence ‘name’.

The specifications ‘‘name:next’’ and ‘‘name:prev’’ may also be used, and they designate the next or previ-
ous message (relative to the current message) which is an element of the user-defined sequence ‘name’.
The specificaitions ‘‘name:first’’ and ‘‘name:last’’ are equivalent to ‘‘name:1’’ and ‘‘name:–1’’, respec-
tively. The specification ‘‘name:cur’’ is not allowed (use just ‘‘cur’’ instead). The syntax of these message
range specifcations is subject to change in the future.

User-defined sequence names are specific to each folder. They are defined using the pick and mark com-
mands.

Public and Private User-Defined Sequences

There are two varieties of sequences: public sequences and private sequences. Public sequences of a folder
are accessible to any MH user that can read that folder and are kept in the .mh_sequences file in the folder.
Private sequences are accessible only to the MH user that defined those sequences and are kept in the user’s
MH context file. By default, pick and mark create public sequences if the folder for which the sequences
are being defined is writable by the MH user. Otherwise, private sequences are created. This can be over-
ridden with the ‘–public’ and ‘–private’ switches to mark.

Sequence Negation

MH provides the ability to select all messages not elements of a user-defined sequence. To do this, the user
should define the entry ‘‘Sequence–Negation’’ in the MH profile file; its value may be any string. This
string is then used to preface an existing user-defined sequence name. This specification then refers to
those messages not elements of the specified sequence name. For example, if the profile entry is:

Sequence–Negation:P not

then anytime an MH command is given ‘‘notfoo’’ as a ‘msg’ or ‘msgs’ argument, it would substitute all
messages that are not elements of the sequence ‘‘foo’’.

Obviously, the user should beware of defining sequences with names that begin with the value of the
‘‘Sequence–Negation’’ profile entry.

The Previous Sequence

MH provides the ability to remember the ‘msgs’ or ‘msg’ argument last given to an MH command. The
entry ‘‘Previous–Sequence’’ should be defined in the MH profile; its value should be a sequence name or
multiple sequence names separated by spaces. If this entry is defined, when when an MH command
finishes, it will define the sequence(s) named in the value of this entry to be those messages that were
specified to the command. Hence, a profile entry of

[mh.6] MH.6.8 UCI version

MH-SEQUENCE(5) -106- MH-SEQUENCE(5)

Previous–Sequence:P pseq

directs any MH command that accepts a ‘msg’ or ‘msgs’ argument to define the sequence ‘‘pseq’’ as those
messages when it finishes.

Note: there can be a performance penalty in using the ‘‘Previous–Sequence’’ facility. If it is used, all MH
programs have to write the sequence information to the .mh_sequences file for the folder each time they
run. If the ‘‘Previous–Sequence’’ profile entry is not included, only pick and mark will write to the
.mh_sequences file.

The Unseen Sequence

Finally, some users like to indicate messages which have not been previously seen by them. Both inc and
show honor the profile entry ‘‘Unseen–Sequence’’ to support this activity. This entry in the .mh_profile
should be defined as one or more sequence names separated by spaces. If there is a value for
‘‘Unseen–Sequence’’ in the profile, then whenever inc places new messages in a folder, the new messages
will also be added to the sequence(s) named in the value of this entry. Hence, a profile entry of

Unseen–Sequence:P unseen

directs inc to add new messages to the sequence ‘‘unseen’’. Unlike the behavior of the
‘‘Previous–Sequence’’ entry in the profile, however, the sequence(s) will not be zeroed by inc.

Similarly, whenever show (or next or prevP) displays a message, that message will be removed from any
sequences named by the ‘‘Unseen–Sequence’’ entry in the profile.

Files

$HOME/.mh_profile The user profile
<mh–dir>/context The user context
<folder>/.mh_sequences Public sequences for <folder>

Profile Components

Sequence–Negation: To designate messages not in a sequence
Previous–Sequence: The last message specification given
Unseen–Sequence: Those messages not yet seen by the user

See Also

mh(1), mark(1), pick(1), mh-profile(5)

Defaults

None

Context

All

[mh.6] MH.6.8 UCI version

MH-SEQUENCE(5) -107- MH-SEQUENCE(5)

Bugs

User-defined sequences are stored in the .mh_sequences file as a series of message specifications separated
by spaces. If a user-defined sequence contains too many individual message specifications, that line in the
file may become too long for MH to handle. This will generate the error message ‘‘.mh_sequences is poor-
ly formatted’’. You’ll have to edit the file by hand to remove the offending line.

This can happen to users who define the ‘‘Previous–Sequence’’ entry in the MH profile and have a folder
containing many messages with gaps in the numbering. A workaround for large folders is to minimize
numbering gaps by using ‘‘folder –pack’’ often.

[mh.6] MH.6.8 UCI version

AP(8) -108- AP(8)

NAME

ap – parse addresses 822-style

SYNOPSIS

/usr/local/lib/mh/ap [–form formatfile] [–format string] [–normalize] [–nonormalize] [–width columns]
addrs ... [–help]

DESCRIPTION

Ap is a program that parses addresses according to the ARPA Internet standard. It also understands many
non–standard formats. It is useful for seeing how MH will interpret an address.

The ap program treats each argument as one or more addresses, and prints those addresses out in the official
822–format. Hence, it is usually best to enclose each argument in double–quotes for the shell.

To override the output format used by ap, the ‘–format string’ or ‘–format file’ switches are used. This per-
mits individual fields of the address to be extracted with ease. The string is simply a format stringand
thefile is simply a format file. See mh–format (5) for the details.

In addition to the standard escapes, ap also recognizes the following additional escape:

Escape Returns Description
error string A diagnostic if the parse failed

If the ‘–normalize’ switch is given, ap will try to track down the official hostname of the address.

Here is the default format string used by ap:

%<{error}%{error}: %{text}%|%(putstr(proper{text}))%>

which says that if an error was detected, print the error, a ‘:’, and the address in error. Otherwise, output the
822–proper format of the address.

Files

$HOME/.mh_profile The user profile
/usr/local/lib/mh/mtstailor tailor file

Profile Components

None

See Also

dp(8),
Standard for the Format of ARPA Internet Text Messages (aka RFC–822)

Defaults

‘–format’ defaults as described above
‘–normalize’
‘–width’ defaults to the width of the terminal

Context

None

[mh.6] MH.6.8 UCI version

AP(8) -109- AP(8)

Bugs

The argument to the ‘–format’ switch must be interpreted as a single token by the shell that invokes ap.
Therefore, one must usually place the argument to this switch inside double–quotes.

On hosts where MH was configured with the BERK option, address parsing is not enabled.

[mh.6] MH.6.8 UCI version

CONFLICT(8) -110- CONFLICT(8)

NAME

conflict – search for alias/password conflicts

SYNOPSIS

/usr/local/lib/mh/conflict [–mail name] [–search directory] [aliasfiles...] [–help]

DESCRIPTION

Conflict is a program that checks to see if the interface between MH and transport system is in good shape

Conflict also checks for maildrops in /usr/spool/mail which do not belong to a valid user. It assumes that no
user name will start with ‘.’, and thus ignores files in /usr/spool/mail which begin with ‘.’. It also checks
for entries in the group (5) file which do not belong to a valid user, and for users who do not have a valid
group number. In addition duplicate users and groups are noted.

If the ‘–mail name’ switch is used, then the results will be sent to the specified name. Otherwise, the results
are sent to the standard output.

The ‘–search directory’ switch can be used to search directories other than /usr/spool/mail and to report
anomalies in those directories. The ‘–search directory’ switch can appear more than one time in an invoca-
tion to conflict.

Conflict should be run under cron (8), or whenever system accounting takes place.

Files

/usr/local/lib/mh/mtstailor tailor file
/etc/passwd List of users
/etc/group List of groups
/usr/local/mhmail Program to send mail
/usr/spool/mail/ Directory of mail drop

Profile Components

None

See Also

mh–alias(5)

Defaults

‘aliasfiles’ defaults to /usr/local/lib/mh/MailAliases

Context

None

[mh.6] MH.6.8 UCI version

DP(8) -111- DP(8)

NAME

dp – parse dates 822-style

SYNOPSIS

/usr/local/lib/mh/dp [–form formatfile] [–format string] [–width columns] dates ... [–help]

DESCRIPTION

Dp is a program that parses dates according to the ARPA Internet standard. It also understands many
non–standard formats, such as those produced by TOPS–20 sites and some UNIX sites using ctime (3). It
is useful for seeing how MH will interpret a date.

The dp program treats each argument as a single date, and prints the date out in the official 822–format.
Hence, it is usually best to enclose each argument in double–quotes for the shell.

To override the output format used by dp, the ‘–format string’ or ‘–format file’ switches are used. This per-
mits individual fields of the address to be extracted with ease. The string is simply a format stringand
thefile is simply a format file. See mh–format (5) for the details.

Here is the default format string used by dp:

%<(nodate{text})error: %{text}%|%(putstr(pretty{text}))%>

which says that if an error was detected, print the error, a ‘:’, and the date in error. Otherwise, output the
822–proper format of the date.

Files

$HOME/.mh_profile The user profile

Profile Components

None

See Also

ap(8)
Standard for the Format of ARPA Internet Text Messages (aka RFC–822)

Defaults

‘–format’ default as described above
‘–width’ default to the width of the terminal

Context

None

Bugs

The argument to the ‘–format’ switch must be interpreted as a single token by the shell that invokes dp.
Therefore, one must usually place the argument to this switch inside double–quotes.

[mh.6] MH.6.8 UCI version

FMTDUMP(8) -112- FMTDUMP(8)

NAME

fmtdump – decode MH format files

SYNOPSIS

/usr/local/lib/mh/fmtdump [–form formatfile] [–format string] [–help]

DESCRIPTION

Fmtdump is a program that parses an MH format file and produces a pseudo-language listing of the how
MH interprets the file.

The ‘–format string’ and ‘–form formatfile’ switches may be used to specify a format string or format file to
read. The string is simply a format string and the file is simply a format file. See mh-formatO(5) for the
details.

Files

$HOME/.mh_profile The user profile
/usr/local/lib/mh/scan.default The default format file

Profile Components

Path: To determine the user’s MH directory

See Also

mh-format(5), mh-sequences(8)

Context

None

Bugs

The output may not be useful unless you are familiar with the internals of the mh-format subroutines.

[mh.6] MH.6.8 UCI version

INSTALL-MH(8) -113- INSTALL-MH(8)

NAME

install-mh – initialize the MH environment

SYNOPSIS

/usr/local/lib/mh/install–mh [–auto] [–compat]

DESCRIPTION

When a user runs any MH program for the first time, the program will invoke install–mh (with the ‘–auto’
switch) to query the user for the initial MH environment. The user does NOT invoke this program directly.
The user is asked for the name of the directory that will be designated as the user’s MH directory. If this
directory does not exist, the user is asked if it should be created. Normally, this directory should be under
the user’s home directory, and has the default name of Mail/. After install–mh has written the initial
.mh_profile for the user, control returns to the original MH program.

As with all MH commands, install–mh first consults the $HOME envariable to determine the user’s home
directory. If $HOME is not set, then the /etc/passwd file is consulted.

When converting from mh.3 to mh.4, install–mh is automatically invoked with the ‘–compat’ switch.

Files

$HOME/.mh_profile The user profile

Profile Components

Path: To set the user’s MH directory

Context

With ‘–auto’, the current folder is changed to ‘‘inbox’’.

[mh.6] MH.6.8 UCI version

POST(8) -114- POST(8)

NAME

post – deliver a message

SYNOPSIS

/usr/local/lib/mh/post [–alias aliasfile] [–filter filterfile] [–nofilter] [–format] [–noformat] [–msgid]
[–nomsgid] [–verbose] [–noverbose] [–watch] [–nowatch] [–width columns] file [–help]

DESCRIPTION

Post is the program called by send (1) to deliver the message in file to local and remote users. In fact, all of
the functions attributed to send on its manual page are performed by post, with send acting as a relatively
simple preprocessor. Thus, it is post which parses the various header fields, appends From: and Date: lines,
and interacts with the SendMail transport system. Post will not normally be called directly by the user.

Post searches the ‘‘To:’’, ‘‘cc:’’, ‘‘Bcc:’’, ‘‘Fcc:’’, and ‘‘Resent–xxx:’’ header lines of the specified mes-
sage for destination addresses, checks these addresses for validity, and formats them so as to conform to
ARPAnet Internet Message Format protocol, unless the ‘–noformat’ flag is set. This will normally cause
‘‘@local–site’’ to be appended to each local destination address, as well as any local return addresses. The
‘–width columns’ switch can be used to indicate the preferred length of the header components that contain
addresses.

If a ‘‘Bcc:’’ field is encountered, its addresses will be used for delivery, and the ‘‘Bcc:’’ field will be
removed from the message sent to sighted recipients. The blind recipients will receive an entirely new mes-
sage with a minimal set of headers. Included in the body of the message will be a copy of the message sent
to the sighted recipients. If ‘–filter filterfile’ is specified, then this copy is filtered (re–formatted) prior to
being sent to the blind recipients.

The ‘–alias aliasfile’ switch can be used to specify a file that post should take aliases from. More than one
file can be specified, each being preceded with ‘–alias’. In any event, the primary alias file is read first.

The ‘–msgid’ switch indicates that a ‘‘Message–ID:’’ or ‘‘Resent–Message–ID:’’ field should be added to
the header.

The ‘–verbose’ switch indicates that the user should be informed of each step of the posting/filing process.

The ‘–watch’ switch indicates that the user would like to watch the transport system’s handling of the mes-
sage (e.g., local and ‘‘fast’’ delivery).

Post consults the envariable $SIGNATURE to determine the sender’s personal name in constructing the
‘‘From:’’ line of the message.

Files

/usr/local/lib/mh/mtstailor tailor file
/usr/local/refile Program to process Fcc:s
/usr/local/lib/mh/mhl Program to process Bcc:s
/usr/local/lib/mh/MailAliases Primary alias file

Profile Components

post does NOT consult the user’s .mh_profile

[mh.6] MH.6.8 UCI version

POST(8) -115- POST(8)

See Also

Standard for the Format of ARPA Internet Text Messages (aka RFC–822),
mhmail(1), send(1), mh–mail(5), mh–alias(5)

Defaults

‘–alias /usr/local/lib/mh/MailAliases’
‘–format’
‘–nomsgid’
‘–noverbose’
‘–nowatch’
‘–width 72’
‘–nofilter’

Context

None

Bugs

‘‘Reply–To:’’ fields are allowed to have groups in them according to the 822 specification, but post won’t
let you use them.

[mh.6] MH.6.8 UCI version

5. REPORTING PROBLEMS

If problems are encountered with an MH program, the problems should be reported to the
local maintainers of MH. When doing this, the name of the program should be reported, along
with the version information for the program. To find out what version of an MH program is
being run, invoke the program with the ‘–help’ switch. In addition to listing the syntax of the
command, the program will list information pertaining to its version. This information includes
the version of MH, the host it was generated on, and the date the program was loaded. A
second line of information, found on versions of MH after #5.380 include MH configuration
options. For example,

version: MH 6.1 #1[UCI] (nrtc-gremlin) of Wed Nov 6 01:13:53 PST 1985
options: [BSD42] [MHE] [NETWORK] [SENDMTS] [MMDFII] [SMTP] [POP]

The ‘6.1 #1[UCI]’ indicates that the program is from the UCI mh.6 version of MH. The pro-
gram was generated on the host ‘nrtc-gremlin’ on ‘Wed Nov 6 01:13:53 PST 1985’. It’s usu-
ally a good idea to send the output of the ‘–help’ switch along with your report.

If there is no local MH maintainer, try the address Bug-MH. If that fails, use the Internet mail-
box Bug-MH@ICS.UCI.EDU.

-116-

6. ADVANCED FEATURES

This section describes some features of MH that were included strictly for advanced MH
users. These capabilities permit MH to exhibit more powerful behavior for the seasoned MH
users.

USER–DEFINED SEQUENCES

User–defined sequences allow the MH user a tremendous amount of power in dealing
with groups of messages in the same folder by allowing the user to bind a group of messages to
a meaningful symbolic name. The user may choose any name for a message sequence, as long
as it consists of alphanumeric characters and does not conflict with the standard MH reserved
message names (e.g., ‘‘first’’, etc). After defining a sequence, it can be used wherever an MH
command expects a ‘msg’ or ‘msgs’ argument.

A restricted form of message ranges are allowed with user–defined sequences. The form
‘‘name:n’’, specifies up to the first ‘n’ messages which are part of the user–defined sequence
‘name’. A leading plus sign is allowed on ‘n’, but is ignored. The interpretation of n is over-
ridden if n is preceded by a minus sign; ‘–n’ always means up to the last ‘n’ messages which
are part of the sequence ‘name’.

Although all MH commands expand user–defined sequences as appropriate, there are two
commands that allow the user to define and manipulate them: pick and mark.

Pick and User–Defined Sequences

Most users of MH will use user–defined sequences only with the pick command. By giv-
ing the ‘–sequence name’ switch to pick (which can occur more than once on the command
line), each sequence named is defined as those messages which pick matched according the the
selection criteria it was given. Hence,

pick –from frated –seq fred

finds all those messages in the current folder which were from ‘‘frated’’, creates a sequence
called ‘‘fred’’, and then adds them to the sequence. The user could then invoke

scan fred

to get a scan listing of those messages. Note that by default, pick creates the named sequences
before it adds the selected messages to the sequence. Hence, if the named sequence already
existed, the sequence is destroyed prior to being re-defined (nothing happens to the messages
that were a part of this sequence, they simply cease to be members of that sequence). By using
the ‘–nozero’ switch, this behavior can be inhibited, as in

pick –from frated –seq sgroup
pick –from fear –seq sgroup –nozero
pick –from freida –seq sgroup –nozero

finds all those messages in the current folder which were from ‘‘frated’’, ‘‘fear’’, or ‘‘freida’’,
and defines the sequence called ‘‘sgroup’’ as exactly those messages. These operations
amounted to an ‘‘inclusive–or’’ of three selection criteria, using pick, one can also generate the

-117-

-118-

‘‘and’’ of some selection criteria as well:

pick –from frated –seq fred
pick –before friday –seq fred fred

This example defines the sequence called ‘‘fred’’ as exactly those messages from ‘‘frated’’ that

were dated prior to ‘‘friday’’.1

Pick is normally used as a back–quoted command, for example,

scan ‘pick –from postmaster‘

Now suppose that the user decides that another command should be issued, using exactly those
messages. Since, pick wasn’t given a ‘–sequence name’ argument in this example, the user
would end–up typing the entire back–quoted command again. A simpler way is to add a
default sequence name to the .mh_profile. For example,

pick: –seq select –list

will tell pick to always define the sequence ‘‘select’’ whenever it’s run. The ‘-list’ is necessary
since the ‘–sequence name’ switch sets ‘–nolist’ whenever the former is encountered. Hence,
this profile entry makes pick define the ‘‘select’’ sequence and otherwise behave exactly as if
there was no profile entry at all.

Mark and User–Defined Sequences

The mark command lets the user perform low–level manipulation of sequences, and also
provides a well–needed debug facility to the implementors/developers/maintainers of MH (the
MH–hacks). In the future, a user–friendly ‘‘front–end’’ for mark will probably be developed to
give the MH user a way to take better advantage of the underlying facilities.

Public and Private User–Defined Sequences

There are two kinds of sequences: public sequences, and private sequences. Public
sequences of a folder are accessible to any MH user that can read that folder and are kept in the
.mh_sequences file in the folder. Private sequences are accessible only to the MH user that
defined those sequences and are kept in the user’s MH context file. By default, pick (and
mark) create public sequences if the folder for which the sequences are being defined is writ-
able by the MH user. Otherwise, private sequences are created. This can be overridden with
the ‘–public’ and ‘–nopublic’ switches.

Sequence Negation

In addition to telling an MH command to use the messages in the sequence ‘‘seen’’, as in

refile seen +old

1 Of course, it is much easier to simply use the built–in boolean operation of pick to get the desired results:

pick –from frated –or –from fear –or –from freida –seq sgroup

and

pick –from frated –and –before friday –seq fred

do exactly the same thing as the five commands listed above. Hence, the ‘–nozero’ option to pick is only useful to
manipulate existing sequences.

-119-

it would be useful to be easily able to tell an MH command to use all messages except those in
the sequence. One way of doing this would be to use mark and define the sequence explicitly,
as in

mark –delete –zero seen –seq notseen

which, owing to mark ’s cryptic interpretation of ‘–delete’ and ‘–zero’, defines the sequence
‘‘notseen’’ to be all messages not in the sequence ‘‘seen’’. Naturally, anytime the sequence
‘‘seen’’ is changed, ‘‘notseen’’ will have to be updated. Another way to achieve this is to
define the entry ‘‘Sequence–Negation:’’ in the .mh_profile. If the entry was

Sequence–Negation: not

then anytime an MH command was given ‘‘notseen’’ as a ‘msg’ or ‘msgs’ argument, it would
substitute all messages that are not a member of the sequence ‘‘seen’’. That is,

refile notseen +new

does just that. The value of the ‘‘Sequence–Negation:’’ entry in the profile can be any string.
Hence, experienced users of MH do not use a word, but rather a special character which their
shell does not interpret (users of the CShell use a single caret or circumflex (usually shift–6),
while users of the Bourne shell use an exclamation–mark). This is because there is nothing to
prevent a user of MH from defining a sequence with this string as its prefix, if the string is noth-
ing by letters and digits. Obviously, this could lead to confusing behavior if the
‘‘Sequence–Negation:’’ entry leads MH to believe that two sequences are opposites by virtue of
their names differing by the prefix string.

The Previous Sequence

Many times users find themselves issuing a series of commands on the same sequences of
messages. If the user first defined these messages as a sequence, then considerable typing may
be saved. If the user doesn’t have this foresight, MH provides a handy way of having MH
remember the ‘msgs’ or ‘msg’ argument last given to an MH command. If the entry
‘‘Previous–Sequence:’’ is defined in the .mh_profile, then when the command finishes, it will
define the sequence(s) named in the value of this entry as being exactly those messages that
were specified. Hence, a profile entry of

Previous–Sequence: pseq

directs any MH command that accepts a ‘msg’ or ‘msgs’ argument to define the sequence
‘‘pseq’’ as those messages when it finishes. More than one sequence name may be placed in
this entry, separated with spaces. The one disadvantage of this approach is that the MH pro-
gams have to update the sequence information for the folder each time they run (although most
programs read this information, usually only pick and mark have to write this information out).

The Unseen Sequence

Finally, some users like to distinguish between messages which have been previously
seen by them. Both inc and show honorthe profile entry ‘‘Unseen–Sequence’’ to support this
activity. Whenever inc places new messages in a folder, if the entry ‘‘Unseen–Sequence’’ is
defined in the .mh_profile, then when the command finishes, inc will add the new messages to
the sequence(s) named in the value of this entry. Hence, a profile entry of

Unseen–Sequence: unseen

-120-

directs inc to add new messages to the sequence ‘‘unseen’’. Unlike the behavior of the
‘‘Previous–Sequence’’ entry in the profile however, the sequence(s) will not be zero’d.

Similarly, whenever show (or next or prev) displays a message, they remove those mes-
sages from any sequences named by the ‘‘Unseen–Sequence’’ entry in the profile.

COMPOSITION OF MAIL

There are a number of interesting advanced facilities for the composition of outgoing
mail.

The Draft Folder

The comp, dist, forw, and repl commands have two switches, ‘–draftfolder +folder’ and
‘–draftmessage msg’. If ‘–draftfolder +folder’ is used, these commands are directed to con-
struct a draft message in the indicated folder. (The ‘‘Draft–Folder:’’ profile entry may be used
to declare a default draft folder for use with comp, dist, forw, and repl) If ‘–draftmessage msg’
is not used, it defaults to ‘new’ (unless the user invokes comp with ‘–use’, in which case the
default is ‘cur’). Hence, the user may have several message compositions in progress simul-
taneously. Now, all of the MH tools are available on each of the user’s message drafts (e.g.,
show, scan, pick, and so on). If the folder does not exist, the user is asked if it should be
created (just like with refile). Also, the last draft message the user was composing is known as
‘cur’ in the draft folder.

Furthermore, the send command has these switches as well. Hence, from the shell, the
user can send off whatever drafts desired using the standard MH ‘msgs’ convention with
‘–draftmessage msgs’. If no ‘msgs’ are given, it defaults to ‘cur’.

In addition, all five programs have a ‘–nodraftfolder’ switch, which undoes the last
occurrence of ‘–draftfolder folder’ (useful if the latter occurs in the user’s MH profile).

If the user does not give the ‘–draftfolder +folder’ switch, then all these commands act
‘‘normally’’. Note that the ‘–draft’ switch to send and show still refers to the file called ‘draft’
in the user’s MH directory. In the interests of economy of expression, when using comp or
send, the user needn’t prefix the draft ‘msg’ or ‘msgs’ with ‘–draftmessage’. Both of these
commands accept a ‘file’ or ‘files’ argument, and they will, if given ‘–draftfolder +folder’ treat

these arguments as ‘msg’ or ‘msgs’.2 Hence,

send -draftf +drafts first

is the same as

send -draftf +drafts -draftm first

To make all this a bit more clear, here are some examples. Let’s assume that the follow-
ing entries are in the MH profile:

Draft–Folder: +drafts
sendf: -draftfolder +drafts

Furthermore, let’s assume that the program sendf is a (symbolic) link in the user’s

2 This may appear to be inconsistent, at first, but it saves a lot of typing.

-121-

$HOME/bin/ directory to send. Then, any of the commands

comp
dist
forw
repl

constructs the message draft in the ‘draft’ folder using the ‘new’ message number. Further-
more, they each define ‘cur’ in this folder to be that message draft. If the user were to use the
quit option at ‘What now?’ level, then later on, if no other draft composition was done, the draft
could be sent with simply

sendf

Or, if more editing was required, the draft could be edited with

comp -use

Instead, if other drafts had been composed in the meantime, so that this message draft was no
longer known as ‘cur’ in the ‘draft’ folder, then the user could scan the folder to see which mes-
sage draft in the folder should be used for editing or sending. Clever users could even employ a
back-quoted pick to do the work:

comp -use ‘pick +drafts -to bug-mh‘

or

sendf ‘pick +drafts -to bug-mh‘

Note that in the comp example, the output from pick must resolve to a single message draft (it
makes no sense to talk about composing two or more drafts with one invocation of comp). In
contrast, in the send example, as many message drafts as desired can appear, since send doesn’t
mind sending more than one draft at a time.

Note that the argument ‘–draftfolder +folder’ is not included in the profile entry for send,
since when comp, et. al., invoke send directly, they supply send with the UNIX pathname of the
message draft, and not a ‘draftmessage msg’ argument. As far as send is concerned, a draft
folder is not being used.

It is important to realize that MH treats the draft folder like a standard MH folder in
nearly all respects. There are two exceptions: first____, under no circumstancs will the

‘–draftfolder folder’ switch cause the named folder to become the current folder.3 Second______,
although conceptually send deletes the ‘msgs’ named in the draft folder, it does not call
‘delete-prog’ to perform the deletion.

What Happens if the Draft Exists

3 Obviously, if the folder appeared in the context of a standard ‘+folder’ argument to an MH program, as in

scan +drafts

it might become the current folder, depending on the context changes of the MH program in question.

-122-

When the comp, dist, forw, and repl commands are invoked and the draft you indicated
already exists, these programs will prompt the user for a reponse directing the program’s action.
The prompt is

Draft ‘‘/usr/src/uci/mh/mhbox/draft’’ exists (xx bytes).
Disposition?

The appropriate responses and their meanings are: replace______: deletes the draft and starts afresh;
list___: lists the draft; refile_____: files the draft into a folder and starts afresh; and, quit____: leaves the draft
intact and exits. In addition, if you specified ‘–draftfolder folder’ to the command, then one
other response will be accepted: new____: finds a new draft, just as if ‘–draftmessage new’ had
been given. Finally, the comp command will accept one more response: use___: re-uses the draft,
just as if ‘–use’ had been given.

The Push Option at What now? Level

The push option to the ‘‘What now?’’ query in the comp, dist, forw, and repl commands,
directs the command to send the draft in a special detached fashion, with all normal output dis-
carded. If push is used and the draft can not be sent, then MH will send the user a message,
indicating the name of the draft file, and an explanation of the failure.

The user can also invoke send from the shell with the ‘–push’ switch, which makes send
act like it had been push ’d by one of the composition commands.

By using push, the user can free the shell to do other things, because it appears to the
shell that the MH command has finished. As a result the shell will immediately prompt for
another command, despite the fact that the command is really still running. Note that if the user
indicates that annotations are to be performed (with ‘–annotate’ to dist, forw, or repl), the anno-
tations will be performed after the message has been successfully sent. This action will appear
to occur asynchronously. Obviously, if one of the messages that is to be annotated is removed
before the draft has been successfully sent, then when MH tries to make the annotations, it
won’t be able to do so. In previous versions of MH, this resulted in an error message mysteri-
ously appearing on the user’s terminal. In mh.5 and later versions, in this special circumstance,
no error will be generated.

If send is push ’d, then the ‘–forward’ switch is examined if a failure notice is generated.
If given, then the draft is forwarded with the failure notice sent to the user. This allows rapid
burst ’ing of the failure notice to retrieve the unsent draft.

Options at What now? Level

By default, the message composition programs call a program called whatnow before the
initial draft composition. The MH user can specify any program for this. Following is some
information about the default ‘‘What now?’’ level. More detailed information can be found in
the whatnow (1) manual entry.

When using the comp, dist, forw, and repl commands at ‘‘What now?’’ level, the edit,
list, headers, refile, and (for the dist and repl commands) the display options will pass on any
additional arguments given them to whatever program they invoke.

In mh.1 (the original RAND MH) and mh.2 (the first UCI version of MH), MH used a
complicated heuristic to determine if the draft should be deleted or preserved after an unsuc-
cessful edit. In mh.3, MH was changed to preserve the draft always, since comp, et. al., could
usually look at a draft, apply another set of heuristics, and decide if it was important or not.
With the notion of a draft folder, in which one by default gets a ‘new’ message draft, the edit
deletion/preservation algorithm was re-implemented, to keep the draft folder from being

-123-

cluttered with aborted edits.

Also, note that by default, if the draft cannot be successfully sent, these commands return
to ‘‘What now?’’ level. But, when push is used, this does not happen (obviously). Hence, if
these commands were expected to annotate any messages, this will have to be done by hand,
later on, with the anno command.

Finally, if the ‘–delete’ switch is not given to the quit option, then these commands will
inform the user of the name of the unsent draft file.

Digests

The forw command has the beginnings of a digestifying facility, with the ‘–digest list’,
‘–issue number’, and ‘–volume number’ switches.

If forw is given ‘‘list’’ to the ‘–digest’ switch as the name of the discussion group, and the
‘–issue number’ switch is not given, then forw looks for an entry in the user’s MH context
called ‘‘digest–issue–list’’ and increments its value to use as the issue number. Similarly, if the
‘–volume number’ switch is not given, then forw looks for ‘‘digest–volume–list’’ (but does not
increment its value) to use as the volume number.

Having calculated the name of the digest and the volume and issue numbers, forw will now pro-
cess the components file using the same format string mechanism used by repl. The current
‘%’–escapes are:

escape type substitution
digest string digest name
msg integer issue number
cur integer volume number

In addition, to capture the current date, any of the escapes valid for dp (8) are also valid for
forw.

The default components file used by forw when in digest mode is:

From: %{digest}-Request
To: %{digest} Distribution: dist-%{digest};
Subject: %{digest} Digest V%(cur) #%(msg)
Reply-To: %{digest}

%{digest} Digest %(weekday{date}), %2(mday{date}) %(month{date}) 19%02(year{date})

Volume %(cur) : Issue %(msg)

Today’s Topics:

Hence, when the ‘–digest’ switch is present, the first step taken by forw is to expand the format
strings in the component file. The next step is to compose the draft using the standard digest
encapsulation algorithm (even putting an ‘‘End of list Digest’’ trailer in the draft). Once the
draft is composed by forw, forw writes out the volume and issue profile entries for the digest,
and then invokes the editor.

Naturally, when composing the draft, forw will honor the ‘–filter filterfile’ switch, which is
given to mhl to filter each message being forwarded prior to encapsulation in the draft. A good
filter file to use, which is called mhl.digest, is:

-124-

width=80,overflowoffset=10
leftadjust,compress,compwidth=9
Date:formatfield="%<(nodate{text})%{text}%|%(tws{text})%>"
From:
Subject:
:
body:nocomponent,overflowoffset=0,noleftadjust,nocompress

FOLDER HANDLING

There are two interesting facilities for manipulating folders: relative folder addressing,
which allows a user to shorten the typing of long folder names; and the folder–stack, which per-
mits a user to keep a stack of current folders.

Relative Folder Addressing

By default, when ‘+folder’ is given, and the folder name is not absolute (does not start
with /, ./, or ../), then the UNIX pathname of the folder is interpreted relative to the user’s MH
directory. Although this mechanism works fine for top–level folders and their immediate
sub–folders, once the depth of the sub–folder tree grows, it becomes rather unwieldly:

scan +mh/mh.4/draft/flames

is a lot of typing. MH can’t do anything if the current folder was ‘‘+inbox’’, but if the current
folder was, say, ‘‘+mh/mh.4/draft’’, MH has a short–hand notation to reference a sub–folder of
the current folder. Using the ‘@folder’ notation, the MH user can direct any MH program
which expects a ‘+folder’ argument to look for the folder relative to the current folder instead
of the user’s MH directory. Hence, if the current folder was ‘‘+mh/mh.4/draft’’, then

scan @flames

would do the trick handily. In addition, if the current folder was ‘‘+mh/mh.4/draft’’,

scan @../pick

would scan the folder ‘‘+mh/mh.4/pick’’, since, in the UNIX fashion, it references the folder
‘‘pick’’ which is a sub–folder of the folder that is the parent of the current folder. Since most
advanced MH users seem to exhibit a large degree of locality in referencing folders when they
process mail, this convention should receive a wide range of uses.

The Folder–Stack

The folder–stack mechanism in MH gives the MH user a facility similar to the CShell ’s
directory–stack. Simply put,

folder –push +foo

makes ‘‘foo’’ the current folder, saving the folder that was previously the current folder on the
folder–stack. As expected,

folder –pop

-125-

takes the top of the folder–stack and makes it the current folder. Each of these switches lists
the folder–stack when they execute. It is simple to write a pushf command as a shell script. It’s
one line:

exec folder –push $@

Probably a better way is to link folder to the $HOME/bin/ directory under the name of pushf
and then add the entry

pushf: –push

to the .mh_profile.

The manual page for folder discusses the analogy between the CShell directory stack
commands and the switches in folder which manipulate the folder–stack. The folder command
uses the context entry ‘Folder–Stack:’ to keep track of the folders in the user’s stack of folders.

Appendix A

COMMAND SUMMARY

ali [–alias aliasfile] [–list] [–nolist] [–normalize] [–nonormalize] [–user] [–nouser]
aliases ... [–help]

anno [+folder] [msgs] [–component field] [–inplace] [–noinplace] [–date] [–nodate]
[–text body] [–help]

bbc [bboards ...] [–topics] [–check] [–read] [–quiet] [–verbose] [–archive] [–noarchive]
[–protocol] [–noprotocol] [–mshproc program] [switches for mshproc]
[–rcfile rcfile] [–norcfile] [–file BBoardsfile] [–user BBoardsuser] [–help]

burst [+folder] [msgs] [–inplace] [–noinplace] [–quiet] [–noquiet] [–verbose]
[–noverbose] [–help]

comp [+folder] [msg] [–draftfolder +folder] [–draftmessage msg] [–nodraftfolder]
[–editor editor] [–noedit] [–file file] [–form formfile] [–use] [–nouse]
[–whatnowproc program] [–nowhatnowproc] [–help]

dist [+folder] [msg] [–annotate] [–noannotate] [–draftfolder +folder]
[–draftmessage msg] [–nodraftfolder] [–editor editor] [–noedit]
[–form formfile] [–inplace] [–noinplace] [–whatnowproc program]
[–nowhatnowproc] [–help]

/usr/local/lib/mh/fmtdump [–form formatfile] [–format string] [–help]

folder [+folder] [msg] [–all] [–fast] [–nofast] [–header] [–noheader] [–pack] [–nopack]
[–recurse] [–norecurse] [–total] [–nototal] [–print] [–noprint] [–list] [–nolist]
[–push] [–pop] [–help]

folders

forw [+folder] [msgs] [–annotate] [–noannotate] [–draftfolder +folder]
[–draftmessage msg] [–nodraftfolder] [–editor editor] [–noedit]
[–filter filterfile] [–form formfile] [–format] [–noformat] [–inplace]
[–noinplace] [–whatnowproc program] [–nowhatnowproc] [–help]

forw [+folder] [msgs] [–digest list] [–issue number] [–volume number]
[other switches for forw] [–help]

-126-

inc [+folder] [–audit audit–file] [–noaudit] [–changecur] [–nochangecur] [–file name]
[–form formatfile] [–format string] [–silent] [–nosilent] [–truncate]
[–notruncate] [–width columns] [–help]

mark [+folder] [msgs] [–sequence name ...] [–add] [–delete] [–list] [–public]
[–nopublic] [–zero] [–nozero] [–help]

/usr/local/lib/mh/mhl [–bell] [–nobell] [–clear] [–noclear] [–folder +folder]
[–form formfile] [–length lines] [–width columns] [–moreproc program]
[–nomoreproc] [files ...] [–help]

mhmail [addrs ... [–body text] [–cc addrs ...] [–from addr] [–subject subject]] [–help]

mhparam [profile-components] [–components] [–nocomponents] [–all] [–help]

mhpath [+folder] [msgs] [–help]

msgchk [–date] [–nodate] [–notify all/mail/nomail] [–nonotify all/mail/nomail]
[users ...] [–help]

msh [–prompt string] [–scan] [–noscan] [–topcur] [–notopcur] [file] [–help]

next [+folder] [–header] [–noheader] [–showproc program] [–noshowproc]
[switches for showproc] [–help]

packf [+folder] [msgs] [-file name] [–help]

pick –cc [+folder] [msgs] [–help]
–date [–before date] [–after date] [–datefield field]
–from

B
A
A
C
A
A
D

–search

E
A
A
F
A
A
G

pattern [–and ...] [–or ...] [–not ...] [–lbrace ... –rbrace]
–subject
–to [–sequence name ...] [–public] [–nopublic] [–zero] [–nozero]
–O–component [–list] [–nolist]

prev [+folder] [–header] [–noheader] [–showproc program] [–noshowproc]
[switches for showproc] [–help]

prompter [–erase chr] [–kill chr] [–prepend] [–noprepend] [–rapid] [–norapid]
[–doteof] [–nodoteof] file [–help]

/usr/local/lib/mh/rcvstore [+folder] [–create] [–nocreate] [–sequence name ...]
[–public] [–nopublic] [–zero] [–nozero] [–help]

-127-

refile [msgs] [–draft] [–link] [–nolink] [–preserve] [–nopreserve] [–src +folder]
[–file file] +folder ... [–help]

repl [+folder] [msg] [–annotate] [–noannotate] [–cc all/to/cc/me] [–nocc all/to/cc/me]
[–draftfolder +folder] [–draftmessage msg] [–nodraftfolder] [–editor editor]
[–noedit] [–fcc +folder] [–filter filterfile] [–form formfile] [–inplace]
[–noinplace] [–query] [–noquery] [–whatnowproc program]
[–nowhatnowproc] [–width columns] [–help]

rmf [+folder] [–interactive] [–nointeractive] [–help]

rmm [+folder] [msgs] [–help]

scan [+folder] [msgs] [–clear] [–noclear] [–form formatfile] [–format string] [–header]
[–noheader] [–width columns] [–reverse] [–noreverse] [–file filename]
[–help]

send [–alias aliasfile] [–draft] [–draftfolder +folder] [–draftmessage msg]
[–nodraftfolder] [–filter filterfile] [–nofilter] [–format] [–noformat] [–forward]
[–noforward] [–msgid] [–nomsgid] [–push] [–nopush] [–verbose]
[–noverbose] [–watch] [–nowatch] [–width columns] [file ...] [–help]

show [+folder] [msgs] [–draft] [–header] [–noheader] [–showproc program]
[–noshowproc] [switches for showproc] [–help]

sortm [+folder] [msgs] [–datefield field] [–textfield field] [–notextfield] [–limit days]
[–nolimit] [–verbose] [–noverbose] [–help]

vmh [–prompt string] [–vmhproc program] [–novmhproc] [switches for vmhproc]
[–help]

whatnow [–draftfolder +folder] [–draftmessage msg] [–nodraftfolder] [–editor editor]
[–noedit] [–prompt string] [file] [–help]

whom [–alias aliasfile] [–check] [–nocheck] [–draft] [–draftfolder +folder]
[–draftmessage msg] [–nodraftfolder] [file] [–help]

/usr/local/lib/mh/ap [–form formatfile] [–format string] [–normalize] [–nonormalize]
[–width columns] addrs ... [–help]

/usr/local/lib/mh/conflict [–mail name] [–search directory] [aliasfiles ...] [–help]

/usr/local/lib/mh/dp [–form formatfile] [–format string] [–width columns] dates ...
[–help]

/usr/local/lib/mh/install–mh [–auto] [–compat]

-128-

/usr/local/lib/mh/post [–alias aliasfile] [–filter filterfile] [–nofilter] [–format]
[–noformat] [–msgid] [–nomsgid] [–verbose] [–noverbose] [–watch]
[–nowatch] [–width columns] file [–help]

/usr/local/lib/mh/slocal [address info sender] [–addr address] [–info data]
[–sender sender] [–user username] [–mailbox mbox] [–file file]
[–maildelivery deliveryfile] [–verbose] [–noverbose] [–debug] [–help]

-129-

Appendix B

MESSAGE NAME BNF

msgs := msgspec |
msgs msgspec

msgspec := msg |
msg-range |
msg-sequence |
user-defined-sequence

msg := msg-name |
<number>

msg-name := ‘‘first’’ |
‘‘last’’ |
‘‘cur’’ |
‘‘.’’ |
‘‘next’’ |
‘‘prev’’

msg-range := msg‘‘–’’msg |
‘‘all’’

msg-sequence := msg‘‘:’’signed-number

signed-number := ‘‘+’’<number> |
‘‘–’’<number> |
<number>

user-defined-sequence := <alpha> |
<alpha><alphanumeric>*

Where <number> is a decimal number greater than zero.

Msg-range specifies all of the messages in the given range and must not be empty.

Msg-sequence specifies up to <number> of messages, beginning with ‘‘msg’’ (in the case of
first, cur, next, or <number>), or ending with ‘‘msg’’ (in the case of prev or last). +<number>
forces ‘‘starting with msg’’, and –<number> forces ‘‘ending with number’’. In all cases,
‘‘msg’’ must exist.

User–defined sequences are defined and manipulated with the pick and mark commands.

-130-

REFERENCES

1. Crocker, D. H., J. J. Vittal, K. T. Pogran, and D. A. Henderson, Jr., ‘‘Standard for the For-
mat of ARPA Network Text Messages,’’ RFC733, November 1977.

2. Thompson, K., and D. M. Ritchie, ‘‘The UNIX Time-sharing System,’’ Communications of
the ACM, Vol. 17, July 1974, pp. 365-375.

3. McCauley, E. J., and P. J. Drongowski, ‘‘KSOS–The Design of a Secure Operating Sys-
tem,’’ AFIPS Conference Proceedings, National Computer Conference, Vol. 48, 1979,
pp. 345-353.

4. Crocker, David H., Framework and Functions of the ‘‘MS’’ Personal Message System, The
RAND Corporation, R-2134-ARPA, December 1977.

5. Thompson, K., and D. M. Ritchie, UNIX Programmer’s Manual, 6th ed., Western Electric
Company, May 1975 (available only to UNIX licensees).

6. Crocker, D. H., ‘‘Standard for the Format of ARPA Internet Text Messages,’’ RFC822,
August 1982.

-131-

-i-

READ THIS

Although the MH system was originally developed by the RAND Corporation, and is
now in the public domain, the RAND Corporation assumes no responsibility for MH or this
particular version of MH.

In addition, the Regents of the University of California issue the following disclaimer in
regard to the UCI version of MH:

‘‘Although each program has been tested by its contributor, no warranty, express or
implied, is made by the contributor or the University of California, as to the accuracy
and functioning of the program and related program material, nor shall the fact of dis-
tribution constitute any such warranty, and no responsibility is assumed by the contri-
butor or the University of California in connection herewith.’’

This version of MH is in the public domain, and as such, there are no real restrictions on
its use. The MH source code and documentation have no licensing restrictions whatsoever. As
a courtesy, the authors ask only that you provide appropriate credit to the RAND Corporation
and the University of California for having developed the software.

MH is a software package that is supported neither by the RAND Corporation nor the
University of California. However, since we do use the software ourselves and plan to continue
using (and improving) MH, bug reports and their associated fixes should be reported back to us
so that we may include them in future releases. The current computer mailbox for MH is
Bug–MH@ICS.UCI.EDU (in the ARPA Internet), and ...!ucbvax!ucivax!bug–mh (UUCP).
Presently, there are two Internet discussion groups, MH–Users@ICS.UCI.EDU and
MH–Workers@ICS.UCI.EDU. MH–Workers is for people discussing code changes to MH.
MH-Users is for general discussion about how to use MH. MH–Users is bi-directionally
gatewayed into USENET as comp.mail.mh.

HOW TO GET MH

Since you probably already have MH, you may not need to read this unless you suspect
you have an old version. There are two ways to get the latest release:

1. If you can FTP to the ARPA Internet, use anonymous FTP to ics.uci.edu
[128.195.1.1] and retrieve the file pub/mh/mh-6.8.tar.Z. This is a tar image after being run
through the compress program (approximately 1.8MB). There should also be a README file
in that directory which tells what the current release of MH is, and how to get updates.

This tar file is also available on louie.udel.edu [128.175.1.3] in portal/mh-6.8.tar.Z. You
may also find MH on various other hosts; to make sure you get the latest version and don’t
waste your time re-fixing bugs, it’s best to get it from either ics.uci.edu or louie.udel.edu.

2. You can send $75 US to the address below. This covers the cost of a 6250 BPI 9-
track magtape, handling, and shipping. In addition, you’ll get a laser-printed hard-copy of the
entire MH documentation set. Be sure to include your USPS address with your check. Checks
must be drawn on U.S. funds and should be made payable to:

Regents of the University of California

The distribution address is:

Computing Support Group
Attn: MH distribution

-i-

-ii-

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92717

714/856-7554

If you just want the hard-copies of the documentation, you still have to pay the $75. The
tar image has the documentation source (the manual is in roff format, but the rest are in TeX
format). Postscript formatted versions of the TeX papers are available, as are crude tty-
conversions of those papers.

FOREWORD

This document describes the RAND MH Message Handling System. Its primary purpose
is to serve as a user’s manual. It has been heavily based on a previous version of the manual,
prepared by Bruce Borden, Stockton Gaines, and Norman Shapiro.

MH is a particularly novel system, and thus it is often more prone to change than other
pieces of production software. As such, some specific points in this manual may not be correct

in the future. In all cases, the on–line sections of this manual, available through the UNIX1

man command, should present the most current information.

When reading this document as a user’s manual, certain sections are more interesting
than others. The Preface and Summary are not particularly interesting to those interested in
learning MH. The Introduction is slightly more interesting, as it touches upon the organization
of the remainder of this document. The most useful sections are the Overview, Tutorial, and
Detailed Description. The Overview should be read by all MH users, regardless of their exper-
tise (beginning, novice, advanced, or hacker). The Tutorial should be read by all beginning and
novice MH users, as it presents a nice description of the MH system. The Detailed Description
should be read by the day–to–day user of MH, as it spells out all of the realities of the MH sys-
tem. The Advanced Features section discusses some powerful MH capabilities for advanced
users. Appendix A is particularly useful for novices, as it summarizes the invocation syntax of
all the MH commands.

There are also several other documents which may be useful to you: The RAND MH Mes-
sage Handling System: Tutorial, which is a tutorial for MH; The RAND MH Message Handling
System: The UCI BBoards Facility, which describes the BBoards handling under MH; MH.5:
How to process 200 messages a day and still get some real work done, which was presented at
the 1985 Summer Usenix Conference and Exhibition in Portland, Oregon; MH: A Multifarious
User Agent, which has been accepted for publication by Computer Networks; MZnet: Mail Ser-
vice for Personal Micro–Computer Systems, which was presented at the First International
Symposium on Computer Message Systems in Nottingham, U.K.; and, Design of the TTI Pro-
totype Trusted Mail Agent, which describes a proprietary ‘‘trusted’’ mail system built on MH.
There are also documents, mostly specific to U.C. Irvine which you may find interesting: MH
for Beginners, and MH for MM Users. All of these documents exist in the mh.6 distribution
sent to your site. There’s also a document, Changes to the RAND MH Message Handling Sys-
tem: MH.6, which describes user–visible changes made to MH since the last major release.

This manual is very large, as it describes a large, powerful system in gruesome detail.
The important thing to remember is:

DON’T PANIC2

As explained in the tutorial, you really need to know only 5 commands to handle most of your
mail.

Very advanced users may wish to consult The RAND MH Message Handling System:
Administrator’s Guide, which is also present in the mh.6 distribution sent to your site.

1 UNIX is a trademark of AT&T Bell Laboratories.
2 Note the large, friendly letters.

-iii-

ACKNOWLEDGMENTS

The MH system described herein is based on the original RAND MH system. It has been
extensively developed (perhaps too much so) by Marshall T. Rose and John L. Romine at the
University of California, Irvine. Einar A. Stefferud, Jerry N. Sweet, and Terry P. Domae pro-
vided numerous suggestions to improve the UCI version of MH. Of course, a large number of
people have helped MH along. The list of ‘‘MH immortals’’ is too long to list here. However,
Van Jacobson deserves a special acknowledgement for his tireless work in improving the per-
formance of MH. Some programs have been speeded-up by a factor of 10 or 20. All of users of
MH, everywhere, owe a special thanks to Van. For this release, numerous MH–Workers sent in
fixes and other changes. A handful of courageous MH–Workers volunteered to beta–test these
changes; their help is particularly appreciated.

This manual is based on the original MH manual written at RAND by Bruce Borden,
Stockton Gaines, and Norman Shapiro.

-iv-

PREFACE

This report describes a system for dealing with messages transmitted on a computer.
Such messages might originate with other users of the same computer or might come from an
outside source through a network to which the user’s computer is connected. Such computer-
based message systems are becoming increasingly widely used, both within and outside the
Department of Defense.

The message handling system MH was developed for two reasons. One was to investi-
gate some research ideas concerning how a message system might take advantage of the archi-
tecture of the UNIX time-sharing operating system for Digital Equipment Corporation PDP-11
and VAX computers, and the special features of UNIX’s command-level interface with the user
(the ‘‘shell’’). The other reason was to provide a better and more adaptable base than that of
conventional designs on which to build a command and control message system. The effort has
succeeded in both regards, although this report mainly describes the message system itself and
how it fits in with UNIX.

The present report should be of interest to three groups of readers. First, it is a complete
reference manual for the users of MH. Second, it should be of interest to those who have a gen-
eral knowledge of computer-based message systems, both in civilian and military applications.
Finally, it should be of interest to those who build large subsystems that interface with users,
since it illustrates a new approach to such interfaces.

The original MH system was developed by Bruce Borden, using an approach suggested
by Stockton Gaines and Norman Shapiro. Valuable assistance was provided by Phyllis Kantar
in the later stages of the system’s implementation. Several colleagues contributed to the ideas
included in this system, particularly Robert Anderson and David Crocker. In addition, valuable
experience in message systems, and a valuable source of ideas, was available to us in the form
of a previous message system for UNIX called MS, designed at RAND by David Crocker.

This report was originally prepared as part of the RAND project entitled ‘‘Data Automa-
tion Research’’, sponsored by Project AIR FORCE.

-v-

SUMMARY

Electronic communication of text messages is becoming commonplace. Computer-based
message systems–software packages that provide tools for dealing with messages–are used in
many contexts. In particular, message systems are becoming increasingly important in com-
mand and control and intelligence applications.

This report describes a message handling system called MH. This system provides the
user with tools to compose, send, receive, store, retrieve, forward, and reply to messages. MH
has been built on the UNIX time-sharing system, a popular operating system developed for the
DEC PDP-11 and VAX classes of computers.

A complete description of MH is given for users of the system. For those who do not
intend to use the system, this description gives a general idea of what a message system is like.
The system involves some new ideas about how large subsystems can be constructed.

The interesting and unusual features of MH include the following: The user command
interface to MH is the UNIX ‘‘shell’’ (the standard UNIX command interpreter). Each separ-
able component of message handling, such as message composition or message display, is a
separate command. Each program is driven from and updates a private user environment,
which is stored as a file between program invocations. This private environment also contains
information to ‘‘custom tailor’’ MH to the individual’s tastes. MH stores each message as a
separate file under UNIX, and it utilizes the tree-structured UNIX file system to organize
groups of files within separate directories or ‘‘folders’’. All of the UNIX facilities for dealing
with files and directories, such as renaming, copying, deleting, cataloging, off-line printing, etc.,
are applicable to messages and directories of messages (folders). Thus, important capabilities
needed in a message system are available in MH without the need (often seen in other message
systems) for code that duplicates the facilities of the supporting operating system. It also
allows users familiar with the shell to use MH with minimal effort.

-vi-

CONTENTS

READ THIS ... i

FOREWORD ... iii

ACKNOWLEDGMENTS .. iv

PREFACE .. v

SUMMARY ... vi

Section

1. INTRODUCTION .. 1

2. OVERVIEW .. 3

3. TUTORIAL .. 5

4. DETAILED DESCRIPTION ... 7

THE USER PROFILE ... 7

MESSAGE NAMING ... 9

OTHER MH CONVENTIONS ... 10

MH COMMANDS .. 11

ALI .. 12

ANNO ... 13

BBC ... 14

BBOARDS .. 16

BURST .. 17

COMP ... 19

DIST .. 21

FOLDER ... 23

FORW ... 26

INC .. 29

MARK ... 31

MHL .. 33

MHMAIL .. 37

MHOOK .. 38

MHPARAM .. 40

MHPATH .. 42

MSGCHK .. 45

MSH .. 46

NEXT .. 49

PACKF .. 50

PICK .. 51

PREV .. 55

PROMPTER .. 56

RCVSTORE .. 58

REFILE ... 60

REPL ... 62

RMF .. 65

RMM ... 66

SCAN .. 67

SEND .. 69

SHOW ... 71

SLOCAL ... 73

SORTM ... 77

VMH ... 79

WHATNOW ... 81

WHOM .. 83

MORE DETAILS .. 84

MH-ALIAS ... 85

MH-FORMAT .. 88

MH-MAIL ... 95

MH-PROFILE ... 98

MH-SEQUENCE .. 104

AP .. 108

CONFLICT ... 110

DP .. 111

FMTDUMP ... 112

INSTALL-MH .. 113

POST ... 114

5. REPORTING PROBLEMS ... 116

6. ADVANCED FEATURES .. 117

USER–DEFINED SEQUENCES .. 117

Pick and User–Defined Sequences .. 117

Mark and User–Defined Sequences .. 118

Public and Private User–Defined Sequences .. 118

Sequence Negation .. 118

The Previous Sequence ... 119

The Unseen Sequence ... 119

COMPOSITION OF MAIL ... 120

The Draft Folder .. 120

What Happens if the Draft Exists .. 122

The Push Option at What now? Level .. 122

Options at What now? Level ... 122

Digests ... 123

FOLDER HANDLING .. 124

Relative Folder Addressing ... 124

The Folder–Stack .. 124

Appendix

A. Command Summary .. 126

B. Message Name BNF .. 130

REFERENCES ... 131

THE RAND MH
MESSAGE HANDLING

SYSTEM:
USER’S MANUAL

UCI Version

Marshall T. Rose
John L. Romine

Based on the original manual by
Borden, Gaines, and Shapiro

November 30, 1993
6.8.3 #1[UCI]

