
MH.5:

How to process 200 messages a day

and still get some real work done

./

Marshall T. Rose

Member, Research Technical Sta�

Northrop Research and Technology Center

y

John L. Romine

Computing Support Group

Department of Information and Computer Science

University of California, Irvine

z

Abstract

The UCI version of the Rand Message Handling System (MH) is dis-

cussed. MH is a powerful user agent which operates in the ARPA Internet

and UUCP environments. In addition to the usual functions provided

by similar programs,MH has several distinguishing characteristics which

give the user additional message handling capability. In particular, MH

provides mechanisms for maintaining an organized mail environment,

tailoring its behavior, and extending its functions.

This document describes MH from several perspectives. Particular em-

phasis is given to: the MH user environment, advanced features of MH

which have proven to be particularly useful for sophisticated users of

electronic mail, the user interface issues in MH, and the mh.5 distribu-

tion. The paper concludes with a summary of the authors' experiences

with MH, and a discussion of future areas of enhancement.

./

Alternate title: MH: Your Key to Success.

y

One Research Park, Palos Verdes Peninsula, CA 90274. Telephone: 213/377{4811.

Computer mail: MRose%NRTC@USC-ECL, : : : !fucbvax!ucivax,trwrbg!nrtc!mrose.

z

University of California at Irvine, Irvine, CA 92717. Telephone: 714/856{6852.

Computer mail: J-Romine@USC-ECL, : : : !fucbvax,trwrbg!ucivax!jromine.

MH.5:

How to process 200 messages a day

and still get some real work done

Introduction

The UCI version of the Rand Message Handling System, MH, is a software

system that performs two functions: �rst, it interfaces a user to a message

transport system, so the user may receive and send mail; second, it permits the

user to maintain an organized mail environment to facilitate the composition of

new messages and the reading of old messages. In short, while not responsible for

the delivery of messages, MH aids the user in handling mail.

MH was originally developed by the Rand Corporation, and initially was

proprietary software. The Department of Information and Computer Science

at University of California, Irvine, shortly after joining the Computer Science

Network (CSnet), acquired a copy of MH, and began additional development of

the software. Since that time, the Rand Corporation has declared MH to be in the

public domain, and the UCI version of MH has passed through four major releases.

The current version, mh.5, is available from U.C. Irvine for a nominal distribution

fee, or may be retrieved from the University of Delaware via anonymous FTP.

Much credit must be given to the initial designers and implementors of MH:

Bruce Borden, Stockton Gaines, and Norman Shapiro. Although MH has su�ered

signi�cant development at UCI since Rand's initial release, the fundamental

concepts of MH's environs have remained nearly unchanged. In addition, the

authors of the current release gratefully acknowledge the comments of the many

sites which have run various releases of MH in the past. In particular, the dozen

or so beta test sites for mh.5 provided tremendous help in stabilizing the current

release.

MH runs on di�erent versions of the UNIX

1

operating system (such as

Berkeley 4.2bsd and various avors of v7). In addition, MH supports four

di�erent message transport interfaces: SendMail[EAllm83], the standard mailer

for 4.2bsd systems; MMDF[DCroc79] and MMDF-II[DKing84], the Multi-Channel

Memo Distribution Facility developed by the University of Delaware which forms

the software-backbone for CSnet[DCome83] mail relay service; SMTP, the ARPA

Internet Simple Mail Transfer Protocol[SMTP]; and, a stand-alone delivery system.

1

UNIX is a trademark of AT&T Bell Laboratories.

1

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 2

This paper is organized in a straight-forward fashion: Initially, the MH

philosophy of mail handling is presented, along with a description of the

environment which the MH user is given to process mail. Following this, certain

advanced features of MH are discussed in more detail, such as facilities for selecting

messages, and \advanced" concepts in draft handling. In addition, user interface

issues in mail handling are addressed, and the merits of MH's approach is critically

examined. Next, the mh.5 distribution package is described. Finally, we conclude

by discussing the authors' experience with MH development and introducing areas

where MH may be further developed.

Although familiarity with MH is not assumed on the part of the reader,

some knowledge of the UNIX operating system is useful. Appendix A gives a short

synopsis of the MH commands.

The MH Philosophy

AlthoughMH has many traits which tend to distinguish it from other systems

which handle mail, there is a single fundamental design decision which inuences

the interface between MH and the user: MH di�ers from most other systems in

that it is composed of many small programs instead of one very large one. This

architecture gives MH much of its strength, since intermediate and advanced users

are able to take advantage of this exibility.

The key to this exibility is that the UNIX shell (usually the C shell or the

Bourne shell), is the user's interface to MH. This means that when handling mail,

the entire power of the shell is at the user's disposal, in addition to the facilities

which MH provides. Hence, the user may intersperse mail handling commands

with other commands in an arbitrary fashion, making use of command handling

capabilities which the user's shell provides.

Furthermore, rather than storing messages in a complicated data structure

within a monolithic �le, each message in MH is a UNIX �le, and each folder (an

object which holds groups of messages) in MH is a UNIX directory. That is,

the directory- and �le-structure of UNIX is used directly. As a result, any UNIX

�le-handling command can be applied to any message.

To the novice, this may not make much sense or may not seem important.

However, as users of MH become more experienced, they �nd this capability

attractive. In addition, this approach is often quite pleasing to system implemen-

tors, because it minimizes the amount of coding to be performed, and given a

modular design, changes to the software system can be maintained easily. There

are, however, performance penalties to be paid with this scheme. This issue is

considered later in the paper.

Having described how MH �ts into the UNIX environment, we now discuss

the mail handling environment which is available to the MH user.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 3

The MH Environs

In the $HOME directory of each MH user, a �le named .mh pro�le contains

static information about the user's MH environment, and default arguments for

MH programs. For the latter case, each line of pro�le takes the form:

program-name: options

Each MH program consults the user's .mh pro�le for its options. These options

are consulted prior to evaluating any command-line arguments, and so provide the

MH user the capability to customize the defaults for each command. Futher, by

using the UNIX link facility, di�erent names can be given to the same command.

Since each MH command looks in the .mh pro�le for a component with the name

by which it was invoked, it's possible to have di�erent defaults for the same

program. For example, it is not uncommon to link prompter (a simple prompting

editor front-end) under the name rapid in the user's bin/ directory, and add to the

.mh pro�le:

rapid: -prepend -rapid

As a result, when prompter is invoked as rapid, it automatically uses the `-prepend'

and `-rapid' options.

The pro�le component ``Path:'' is the path to the user's MH-directory,

usually Mail. In addition to containing the user's folders, the MH-directory also

contains skeletons and templates used by the MH programs, and the user's context

�le. This latter �le has the same format as the user's .mh pro�le, and contains the

dynamic, context-dependent information about the user's environment. Whenever

MH looks for an MH-speci�c �le, such as a template or skeleton, it �rst consults

the user's MH-directory, and then a system-wide library area.

TheMH user always has a current folder, which is the folder in which the user

is currently (or was last) working. Since any MH program which deals with folders

implicitly manipulates this information, the name of the current folder is stored in

the context component ``Current-Folder:''. Every folder has a current message

known as `cur'. These values are the defaults for MH commands which accept

folder and/or messages arguments.

MH programs make use of a set of envariables which further customize their

behavior. The $MH envariable, if present, speci�es the name of an alternate pro�le

for the user. This allows a user of MH to easily maintain multiple mail-handling

environments.

In terms of command syntax, most MH commands accept an optional folder

argument, such as `+outbox'. Unlike most UNIX commands, all MH commands

have switches which are words, rather than single letters. Switches may be

abbreviated to the least unambiguous pre�x. All MH commands also support

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 4

1 % inc

2 Incorporating new mail into inbox...

3

4 1+ 03/16 Rand MH System MH transcript <<Here's the body of a sample m

5

6 % show

7 (Message inbox:1)

8 To: jromine@uci-icsa

9 Subject: MH transcript

10 Date: 16 Mar 85 18:28:59 PST (Sat)

11 From: Rand MH System <mh@uci-icsa>

12

13 Here's the body of a sample message.

14 % repl

15 To: Rand MH System <mh@uci-icsa>

16 cc: jromine@uci-icsa

17 Subject: Re: MH transcript

18 In-reply-to: Your message of 16 Mar 85 18:28:59 PST (Sat).

19 --------

20 Thanks for the test.

21

22 /JLR

23 ^D

24

25 What now? send

26 % comp

27 To: MRose@UCI

28 cc:

29 Subject: sample comp

30 --------

31 Here's a sample compose for the MH transcript.

32

33 /JLR

34 ^D

35

36 What now? send -verbose

37 -- Posting for All Recipients --

38 -- Local Recipients --

39 MRose: address ok

40 -- Recipient Copies Posted --

41 Message Processed

Figure 1

An MH Session

a `-help' switch, which lists the syntax of the command along with available

switches, and the version number of the command. Most MH commands also take

a `msg' or `msgs' argument which takes the form of a message number (``1''), a

message range (``1-2''), a standard sequence name (``cur''), or a user-de�ned

sequence name (``select'').

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 5

An MH Transcript

Figure 1 contains a transcript of a simple MH session. First, inc is run to

incorporate the new mail into the user's ``+inbox'' folder.

A scan listing of the mail is printed while it is being incorporated. (The

user could run scan explicitly to generate additional scan listings later on.) The

scan listing gives the message number, followed by the date, message sender,

and subject. (If the message originated from the user generating the listing, the

``to:'' addressee is displayed instead of the sender.) If the subject is short, the

�rst part of the message body is displayed after the characters ``<<''. The plus

sign (`+') after the message number indicates the current message.

The user shows the message, and decides to reply. A reply draft is created

using the headers of the message being replied-to, using the default replcomps

template. The default editor, prompter, is called to edit the draft. When an

EOT is typed, prompter exits and the user is left at the What now? prompt. The

option send is chosen. Since there were no problems in posting the draft with the

message transport system, no additional output is produced. (MH is not verbose

by default.)

The user then decides to compose a new message. The default skeleton,

components, is copied to the draft, and prompter is once again called. After

entering the addresses, subject, and body, the user then sends the draft from the

What now? prompt, using ``send -verbose'', which causes MH to list out the

message addresses as it submits them to the message transport system.

Some MH Features

We now consider certain advanced features in MH. These features have been

chosen to demonstrate some useful capabilities available to the MH user.

Message Sequences and Selection

MH has several built-in message sequence names, which may be used

anywhere a `msg' or `msgs' argument is expected. These are: `cur', `next',

`prev', `first', `last', and `all'. Message ranges may also be speci�ed. For

example, `all' is actually `first-last', and `+mh last:5' references the last

�ve messages in your `+mh' folder. A powerful capability of MH is the ability to use

not only the pre-de�ned message sequence names, but also arbitrary user-de�ned

message sequence names.

Although allMH programs recognize user-de�ned sequences when appropriate,

the pick and mark commands can create and modify user-de�ned message

sequences. The mark command allows low-level manipulation of sequences, and is

not particularly interesting in our discussion.

The pick command selects certain messages out of a folder. The criteria used

for selection may be a search string and/or a date range.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 6

Searching is performed on either a speci�c header in the message (e.g.,

``To:''), or anywhere within the message. By default, pick lists out the message

numbers that matched the selection criteria. Thus, pick is useful in backquoted

operations to the shell. For example, to scan all the messages in the current folder

from \frated", the MH user issues the command:

scan `pick -from frated`

To perform more complicated message selection, user-de�ned sequences are

employed. Supplying a `-sequence name' argument to pick, will cause it to de�ne

the sequence `name' as those messages matched.

Giving pick a list of messages causes it to limit its search to just those

messages. For example, to �nd all the messages in the current folder from \frated"

also dated before friday:

pick -from frated -sequence select

pick select -before friday -sequence select

With the �rst pick command, the sequence ``select'' is de�ned to be all those

messages from \frated". In the second command, only those messages already in

the ``select'' sequence are searched, and the ``select'' sequence is rede�ned

to be only those messages which are also dated before friday. Those messages could

then be shown with:

show select

When a `-sequence name' argument is given to pick, the default behavior |

listing the message numbers matched | is inhibited. To re-enable this behavior,

the `-list' option may be given. As a result, advanced users of MH often put the

following line in their .mh pro�le:

pick: -sequence select -list

which allows them to easily make use of the `select' sequence as the messages

last selected with pick.

Often it is desirable to act upon those messages which are not members of

a given sequence. For this purpose, the ``Sequence-Negation:'' pro�le entry

is useful. If the name of a user-de�ned sequence is pre�xed with the value of the

sequence-negation pro�le entry, MH commands will operate upon those messages

which are not members of that sequence. For example, given a pro�le entry of:

Sequence-Negation: not

those messages which are not in the `select' sequence could be scan'd with:

scan notselect

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 7

Obviously, some confusion could result if an attempt was made to de�ne a se-

quence name which began with the sequence-negation string (e.g., ``notselect'').

For this reason, MH users will often use a single character, which their shell doesn't

interpret, as their sequence-negation string (e.g., up-caret (`^') for C Shell users,

and exclamation-mark (`!') for Bourne shell users).

MH also provides a way of automatically remembering the last message list

given to an MH command. This facility is implemented by using a pro�le entry

called ``Previous-Sequence:''.

Draft Handling

After the initial edit of a message draft, the comp, dist, forw, and repl

programs give the user a What now? prompt. The valid responses include: edit to

re-edit the draft, quit to exit without sending the draft, send to send the draft, and

push to send the draft in the background.

When the send option is given, the draft is posted with the message transport

system. If there problems posting the draft, the What now? prompt is re-issued, so

errors in the draft may be corrected.

Since posting the draft can be slow, the push option allows the MH user to

send the draft in the background, and return immediately to the shell. If there are

problems posting the message, the user will not see the diagnostics produced by

the message transport system. For this reason, if push is used instead of send, and

the message is not successfully posted, MH mails a message to the user containing

any diagnostics which the message transport system produced along with a copy

of the message. Later, the draft may be re-edited by entering ``comp -use''.

A relatively new feature of MH is the ability to use a folder to store multiple

drafts. These drafts are kept in an ordinaryMH folder, and may be operated upon

by MH commands. To enable this feature, the MH user selects a folder-name for

the draft-folder, and creates an entry in the .mh pro�le:

Draft-Folder: +foldername

From this point on, when a message is composed, the draft will be created as a

message in that folder, instead of using the draft �le in the user's MH directory.

Unfortunately, if posting problems occur on a message which has been push'd, it

may be di�cult to re-edit the draft with ``comp -use''. This might be the case

if the user had started composing another message, while that �rst draft was being

posted. In that event, the current-message in the draft-folder would no longer

point to the failed draft.

There is a solution for this problem, however. By default, push assumes the

`-forward' option, which says that if the message draft fails to be posted, it

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 8

should be forwarded back to the user in the error report which push generates.

The failed draft may then be extracted with the burst program (discussed later).

BBoards

MH has a convenient interface to the UCI BBoards facility[MRose84a].

2

This

facility permits the e�cient distribution of interest group messages on a single

host, to a group of hosts under a single administration, and to the ARPA Internet

community.

Although most readers are probably familiar with the concept of an interest

group in the Internet context, a brief description is now given. Observant readers

will notice that the distributed nature of the \network news" (a.k.a. USENET)

tends to avoid many of the problems described below.

Described simply, an interest group is composed of a number of subscribers

with a common interest. These subscribers post mail to a single address, known

as the distribution address (e.g., MH-Workers@UCI. From this distribution address,

a copy of the message is sent to each subscriber. Each group has a moderator,

who is the person that runs the group. This moderator can usually be reached at

a special address, known as the request address (e.g., MH-Workers-Request@UCI).

Usually, the responsibilities of the moderator are quite simple, since the mail

system handles distribution to subscribers automatically. In some interest groups,

instead of each separate message being distributed directly to subscribers, a batch

of (hopefully related) messages are put into a digest format by the moderator and

then sent to the subscribers. (This is similar to a newsletter format.) Although

this requires more work on the part of the moderator and introduces delays, such

groups tend to be better organized.

Unfortunately, some problems arise with the scheme outlined above. First,

if two users on the same host subscribe to the same interest group, two copies of

the message are delivered. This is wasteful of both processor and disk resources at

that host.

Second, some groups carry a lot of tra�c. Although subscription to a group

does indicate interest on the part of a subscriber, it is usually not interesting to get

50 or so messages delivered each day to the user's private maildrop, interspersed

with personal mail, which is likely to be of a much more important and timely

nature.

Third, if a subscriber's address in a distribution list becomes \bad" somehow

and causes failed mail to be returned, the originator of the message is normally

noti�ed. It is not uncommon for a large list to have several bogus addresses. This

results in the originator being ooded with \error messages" from mailers across

2

The UCI BBoards facility can run under either the MMDF or SendMail, or in a more restricted

form under stand-alone MH.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 9

the Internet stating that a given address on the list was bad. Needless to say, the

originator usually does not care if the bogus addresses got a copy of the message

or not. The originator is merely interested in posting a message to the group at

large. On the other hand, the moderator of the group does care if there are bogus

addresses on the list, but ironically does not receive noti�cation.

To solve these problems, the UCI BBoards facility introduces a new entity

into the picture: a distribution channel. All interest group mail is handled by the

special mail system component. The distribution address for an interest-group

maps mail for that interest-group to the distribution channel, which then performs

several actions. First, if local delivery is to be performed, a copy of the message is

placed in a global maildrop for the interest group with a timestamp and a unique

number. Local users can read messages posted for the interest group by reading

this \public" maildrop. Second, if further distribution is to take place, a copy of

the message is sent to the distribution address in such a way that if any of the

addresses are bogus, failure notices will be returned to the local maintainer of the

group address list, rather than the originator of the message.

This scheme has several advantages: First, messages delivered to the local

host are processed and saved once in a globally accessible area. The UCI BBoards

facility supports software which allows a user to query an interest group for new

messages and to read and process those messages in the MH-style. Second, once

a host administrator subscribes to an interest group, each user may join or quit

the list's readership without contacting anyone. Third, a hierarchical distribution

scheme can be constructed to reduce the amount of delivery e�ort. Finally, errors

are prevented from propagating. When an address on the distribution list goes

bad, the list moderator who is responsible for the address is noti�ed. If a local

moderator does not exist, then the local PostMaster is noti�ed (not the global

group moderator).

In addition to solving the problems outlined above, the UCI BBoards facility

supports several other capabilities. BBoards may be automatically archived in

order to conserve disk space and reduce processing time when reading current

items. Also, the archives can be separately maintained on tape for access by

interested researchers.

Special alias �les may be generated which allow the MH user to shorten

address entry. For example, instead of sending to SF-Lovers@Rutgers, a user of

MH usually sends to ``SF-Lovers'' and the MH aliasing facility automatically

makes the appropriate expansion in the headers of the outgoing message. Hence,

the user need only know the name of an interest group and not its global network

address.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 10

Finally, the UCI BBoards facility supports private interest groups using the

UNIX group access mechanism. This allows a group of people on the same or

di�erent machines to conduct a private discussion.

The practical upshot of all this is that the UCI BBoards facility automates the

vast majority of BBoards handling from the point of view of both the PostMaster

and the user.

MH provides three programs to deal with interest groups. The bbc program

is used to check on the status of one or more groups, and to optionally start an

MH shell on those groups which the user is interested in. The bbl program can be

used to manually perform maintenance on a discussion group beyond the normal

automatic capabilities of the UCI BBoards facility. Finally, the msh program

implements an MH shell for reading BBoards, in which nearly all of the MH

commands are implemented in a single program.

Observant readers may note that the use of msh is contrary to the MH

philosophy of using relatively small, single-purpose programs. Sadly, the authors

admit that this is true. In an e�ort to minimize use of system resources however,

BBoards are kept in maildrop format instead of folders.

3

Some research has gone

into overcoming this problem to restore MH's purity of purpose, but all solutions

proposed to date are either unworkable or require signi�cant recoding of MH's

internals.

Bursting

Internet interest group mail is often sent out in digest form. The experienced

MH user may wish to deal with the digest messages on an individual basis, however.

The burst program allows the MH user to extract these digest messages, and store

each as an individual MH message.

Burst will also extract forwardedmessages generated by forw (or the forwarded

message in the error report generated by push, as described above). Although

burst cannot always decapsulate messages encapsulated by sites not running MH,

it adheres to the proposed standard described in [MRose85b].

3

When the message transport system delivers a message to a user it stores it in a single �le, called

a maildrop. Since many messages may be present in a single maildrop, (in theory) there is a unique

string acting as a separator between messages in the maildrop. Although this is convenient for

storage of messages, it makes retrieval more di�cult unless a separate index into the maildrop is

kept. This latter approach is taken by the msg program available with MMDF-II and by msh as well.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 11

Distributed Mail

The ARPA Internet community consists of many types of heterogeneous

nodes. Some hosts are large mainframe computers, others are personal work-

stations. All communicate using the milstd TCP/IP protocol suite[IP, TCP].

Messages which conform to the Standard for the Format of ARPA Internet Text

Messages[DCroc82] are exchanged using the Simple Mail Transfer Protocol[SMTP].

On smaller nodes in the ARPA Internet, it is often impractical to maintain

a message transport system (e.g., SendMail). For example, a workstation may not

have su�cient resources (cycles, disk space) in order to permit an SMTP server

and associated local mail delivery system to be kept resident and continuously

running. Furthermore, the workstation could be o�-net for extended periods of

time. Similarly, it may be expensive (or impossible) to keep a personal computer

interconnected to an IP-style network for long periods of time. In other words, the

node is lacking the resource known as \connectivity".

Despite this, it is often desirable to be able to manage mail with MH on

these smaller nodes, and they often support a user agent to aid the tasks of mail

handling. To solve this problem, a network node which can support a message

transport entity (known as service host) o�ers a maildrop service to these less

endowed nodes (known as client hosts). The Post O�ce Protocol[JReyn84] (POP)

is intended to permit a workstation to dynamically access a maildrop on a service

host to pick-up mail.

4

The level of access includes the ability to determine the

number of messages in the maildrop and the size of each message, as well as to

retrieve and delete individual messages. More sophisticated implementations of the

POP server are able to distinguish between the header and body portion of each

message, and send n lines of a message to the POP client. This capability is useful

in thinly connected environments where conservation of bandwidth is important.

By utilizing a more intelligent POP client, a user may generate \scan listings" and

decide dynamically which messages are worth taking delivery on. The philosophy

of the POP is to put intelligence in the POP clients and not the POP servers.

The current release of MH supports the above model fully. A POP client

program is available to retrieve a maildrop from a POP service host. In addition,

using the SMTP con�guration for delivery in MH (either in conjunction with

SendMail or the MMDF), a user is able to specify a search-list of service hosts

(and/or networks) to try to post mail. Using this search-list, when an MH user

posts a draft, the post program will attempt to establish an SMTP connection

with each host in the search-list to post the message until it succeeds. Initial

4

Actually, there are three di�erent descriptions of the POP. The �rst, cited in [JReyn84], was the

original description of the protocol, which su�ered from certain problems. Since then, two alternate

descriptions have been developed. The o�cial revision of the POP[MButl85], and the revision of the

POP which MH uses (which is documented in an internal memorandum in the MH release). This

paper considers the POP in the context of the MH release.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 12

experimentation using the POP and MH in a local network environment has

proved quite successful.

User Interface Issues in MH

At this point, it is perhaps useful to take a step backwards and examine the

success and problems of MH's approach to user interfaces.

Creeping Featurism

A complaint often heard about systems which undergo substantial develop-

ment by many people over a number of years, is that more and more options are

introduced which add little to the functionality but greatly increase the amount of

information a user needs to know in order to get useful work done. This is usually

referred to as creeping featurism.

Unfortunately MH, having undergone six years of o�-and-on development by

ten or so well-meaning programmers (the present authors included), su�ers mightily

from this. For example, the send command has twenty-�ve visible switches, and at

least nine hidden switches, for a total of thirty-four. The poor user who types

send -help

watches the options scroll o� the screen (since the `-help' switch also lists out

four other lines of information).

5

The sad part is that all of these switches are

useful in one form or another.

There are a lot of good things to be said for the \one program, one function"

philosophy of system design. In the MH case, however, each program really does

only one mail handling activity (with a few minor exceptions). The options

associated with each command are present to modify the program's behavior to

perform similar, but slightly di�erent tasks. In further defense of MH, note that

there are 32 MH commands at present, all performing di�erent tasks.

The problem with creeping featurism though, is that while the functionality

of the system increases sub-linearly, the complexity of the system increases linearly.

That is, although the number of switches that a program takes might double, it is

unlikely that the program's functionality or capabilities will double.

5

Recently, this was �xed by compressing the way in which switches are presented. The solution is

only temporary however, as send will no doubt acquire an endless number of switches in the years

to come.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 13

To:

cc:

Bcc:

Fcc: outbox

Fcc:

Subject:

Reply-To:

Figure 2

Draft Skeleton

To: <reply-to|from>

cc: <?to|cc><to>,<cc>

Fcc: +outbox

Fcc: <?fcc><fcc>

Subject: <?subject>Re: <subject>

In-reply-to: <?date><?message-id>Your message of <date>.

<message-id>

In-reply-to: <?date><!message-id>Your message of <date>.

Figure 3

Reply Template

Templates versus Switches

One way to trim the explosion of available options, while still increasing

functionality, is to introduce options with a richer domain. Hence, instead of using

options which take on or o� forms or simple numeric or string values, the possible

values which an option might take on is given a large space. There are several ways

that this might be accomplished.

The comp, dist, and forw programs use draft skeletons (simple form �ll-in

�les) to construct the general format of the draft being composed. An example of

a draft skeleton used for composing new messages (by comp) is shown in Figure 2.

The approach is to let the user specify (and later edit) both arbitrary headers of

draft and the body of the draft. Note while most of the �elds are empty, the �rst

``Fcc:'' �eld already contains a value. By using the simple prompting editor,

prompter, the user can speedily enter the headers of the message. The prompter

program given the skeleton in Figure 2 would prompt the user for the contents

of each �eld, except for the second ``fcc:'', which it would include verbatim.

It would then read the body of the message up to an end-of-�le. Naturally, the

MH user is free to use any editor to edit any part of the draft (headers or body).

This example demonstrates the exibility achieved by not limiting what headers a

draft may contain (which most mail sending programs do), while still retaining the

simplicity of being able to treat the entire message draft as a UNIX �le.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 14

From: <?me>Message Agent \<<me>>

To: <reply-to|from>

Fcc: +rcvtrip

Fcc: <?fcc><fcc>

Subject: <?subject>BEEP! Re: <subject>

Subject: <!subject>BEEP!

In-reply-to: <?date><?message-id>Your message of <date>.

<message-id>

In-reply-to: <?date><!message-id>Your message of <date>.

This is an automatic reply. Feel free to send additional mail, as only

this one notice will be generated.

I am attending the USENIX Summer '85 conference in Portland, Oregon.

I expect to be reading mail again on the 16th of June.

/mtr

Figure 4

The tripcomps Reply Template

Another more interesting approach is used by the repl command, which

constructs a draft in reply-to a previously received message. Instead of adding

switches to indicate which �elds of the draft should be derived from the message

being replied-to, and how they should be derived, a single option, the ability to

specify a template, was made available. An example of a reply template is shown

in Figure 3. Put simply, based on the presence of certain �elds in the message

being replied-to, and a few switches given by the user, using the reply template,

repl generates the reply draft automatically.

This facility, for example, can be used to generate automatic replies.

6

One

function might be to write a rcvtrip shell script which automatically answered

messages when mail wasn't being read for a period of time (e.g., while attending a

conference). An example of a reply template at the heart of such a script is shown

in Figure 4.

Finally, another application might be to utilize the highly useful letter bomb

protocol.

7

The important thing to note about this template is that it generates

not only the headers of the reply draft (with a creative ``Reply-to:'' address),

but the body as well. Hence, the commands

repl -form bombcomps -noedit ; rmm

6

MH supports the notion of a user-de�ned mail hook which is invoked each time a user receives

mail.

7

The authors wish to credit Ron Natalie of the Ballistics Research Laboratory in Aberdeen,

Maryland for formalizing the use of this protocol in the ARPA Internet community.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 15

To: <reply-to|from>

cc: <?to|cc><to>,<cc>

Fcc: +outbox

Fcc: <?fcc><fcc>

Subject: <?subject>Re: <subject>

In-reply-to: <?date><?message-id>Your message of <date>.

<message-id>

In-reply-to: <?date><!message-id>Your message of <date>.

Reply-To: /dev/null

\

*-XXX

/ XX

X

X

X

X

X

IIIIIIIII

IIIIIIIII

IIIIIIIII

IIIIIIIII

XXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXX

Figure 5

The bombcomps Reply Template

What now? push

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 16

width=80,length=0,overflowtext=,overflowoffset=10

Date:leftadjust,compress,compwidth=9

Subject:leftadjust,compress,compwidth=9

From:leftadjust,compress,compwidth=9

To:leftadjust,compress,compwidth=9

cc:leftadjust,compress,compwidth=9

Resent-Note:leftadjust,compwidth=9

:

body:nocomponent,overflowoffset=0

Figure 6

Display Template

are very handy for dealing with disturbing mail in a straight-forward manner. Of

course, repl could be linked to bomb in the user's bin/ directory and an appropriate

line could be added to the user's MH pro�le, in order to further shorten type-in.

A variation on the reply template is the display template. A display template,

as used by the mhl program, contains instructions on how to format a message. In

addition to being used by show, et. al., the forw program can also use a display

template to format each message being forwarded. Similarly, although repl uses a

reply template to construct the draft being composed, it also may use a display

template to format the body of the message being replied-to for enclosure in the

reply. Furthermore, the post program may use a display template to format the

body of a blind-carbon-copy. An example of a display template used for formatting

forwarded messages is shown in Figure 6.

As with reply templates, display templates can o�er a lot of functionality.

For example, the one line display template:

body:nocomponent,overflowtext=,overflowoffset=0,width=10000

can be used to extract the body of a message, while ignoring the headers. Hence,

if a shar archive arrived in the mail, a convenient way to unpack it, assuming the

above display template was called mhl.body, would be:

show -form mhl.body | sh

The biggest win with display templates, of course, is that all those annoying

header lines which mailers everywhere generate can be simply and easily �ltered

out.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 17

Modularity versus Monolithicity

Since MH is a set of programs which perform separate tasks, as opposed to

being a single, monolithic program, the power of the shell is used directly to aid in

mail-handling. One powerful capability which this design achieves is the ability to

extend the MH command set, by developing shell scripts which use the standard

MH programs to accomplish complicated or specialized tasks.

For example, in the MH distribution there is a shell script called mpick

(shown in Figure 7) which tries to locate all the messages which pertain to a given

discussion, by looking at the ``Message-ID:'' and ``In-reply-to:'' headers,

to �nd matching message-ids.

8

Unfortunately, some parts of MH are somewhat monolithic. An example of

this is the What now? prompt. There are only a few options at this prompt, and

one cannot give a normal shell command. Some MH users seem to feel that more

options should be added to the What now? prompt, such as an insert-�le option. It

was argued that just about any editor would allow you to insert a �le, and another

What now? option was not needed. These users persisted, however, so the problem

was solved, by writing a trivial shell script \editor" (see Figure 8) which could be

invoked by the edit option:

What now? edit append filename

A better interface at this point is really needed, however. One possibility is to

simply pass any unrecognized commands on to a shell for interpretation, supplying

the path name of the draft �le as an argument. A solution which shows more

promise is to give you a sub-shell instead of the What now? prompt, and setup

certain envariables so that the MH commands would act upon the draft by default.

For example, show with no `msgs' arguments would show the draft instead of the

current message. This alternative has recently been implemented and is under

testing.

The MH Distribution

The mh.5 distribution is now briey described, both in terms of static

con�guration methods and dynamic tailoring. Appendix B describes the mechanics

of receiving an mh.5 distribution.

8

Note that the shell scripts included in the MH distribution are written for the Bourne shell, and

have a `:' as the �rst character of the �rst line, so they will be portable to all versions of UNIX, not

just those which support the Berkeley `#!' enhancement.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 18

: 'mpick - relate messages /mtr'

PATH=:/bin:/usr/bin:/usr/ucb:/usr/local:/usr/local/lib/mh; export PATH

F="" M="" S=""

for A in $*

do

case $A in

-*) S="$S $A" ;;

+*|@*) case $F in

"") F=$A ;;

*) echo "mpick: only one folder at a time" 1>&2

exit 1 ;;

esac ;;

*) M="$M $A" ;;

esac

done

S="$S -sequence hits -list -nozero"

if mark $F all -add -sequence hits;

then mark $F all -delete -sequence hits;

else exit 1;

fi

for A in ${M-cur}

do

for C in `mhpath $F $A`

do

if [-r $C];

then

I=`mhl -form mhl.msgid $C`;

case $I in

"") echo "no message-id in message `basename $C`" 1>&2 ;;

*) pick --in-reply-to "$I" $S ;;

esac

else

echo "message $A doesn't exist" 1>&2; exit 1;

fi

done

done

exit 0

Figure 7

The mpick Script

Con�gurable MH

The MH distribution currently runs on a large number of di�erent UNIX

versions, ranging from MicroSoft XENIX to Berkeley 4.2bsd. All the code which

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 19

: 'append - stupid append editor for MH - /jlr'

case $# in

1|2) case $# in

1) F=$1; echo -n "Append file: " 1>&2; read A ;;

2) F=$2; A=$1 ;;

esac

cat $A < /dev/null >> $F ;;

*) echo "append: arg count" 1>&2 ; exit 1 ;;

esac

exit

Figure 8

The append Editor

bin /usr/local

bboards on

editor /usr/local/prompter

etc /usr/local/lib/mh

mail /usr/spool/mail

manuals local

mts sendmail/smtp

news off

options BSD42

options MHE NETWORK

options UCI

Figure 9

Sample MH Con�guration File

is speci�c to a particular target environment is enabled via the C-preprocessor

``#ifdef'' mechanism, so compilation under di�erent versions of UNIX is trivial.

There are, however, a large number of compile-time options which may vary from

site to site, so an automated con�guration method was needed.

The MH-installer must create a con�guration �le, which contains a list of

the compile-time options and the values which are desired for them. Compile-time

options include the installation location for MH, what kind of message transport

system is to be used, and the default editor for the installation. An example of

such a con�guration �le is shown in Figure 9.

After creating this �le (several examples are included in the distribution), the

installer runs the mhcon�g program, which customizes the Make�les and some of

the programs, for that site's particular installation. No hand-editing of any source

code should be necessary, under normal circumstances.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 20

mmdfldir: /usr/spool/mail

mmdflfil:

mmdelim1: \001\001\001\001\n

mmdelim2: \001\001\001\001\n

mmailid: 0

lockstyle: 0

lockldir:

hostable: /usr/local/lib/mh/hosts

servers: localhost \01localnet

Figure 10

Sample MTS Tailor File

Interface to the Message Transport System

MH will run with a number of message transport systems, including SendMail,

MMDF-II, and a small stand-alone system. One exible method of posting mail

is through an SMTP connection. There are a couple of major wins in using this

con�guration: First, none of the MH programs need to know where the interface

programs to the message transport system are located, which makes them easier

to move between systems. Second, mail can be posted on relay hosts, and the local

host of an MH user may not need a message transport system at all (as alluded to

in the preceeding discussion on the POP).

Those parts of MH which interact with the local message transport agent

read additional tailoring information when they start.

9

This information includes

the location of standard and alternate maildrops, maildrop delimiter strings, the

locking directory and locking style, and other tailoring information speci�c for

the particular message transport system in use (e.g., the default server search-list

when mail is posted with the SMTP). In most cases, by using a tailor �le, each site

running a similar MH con�guration is able to simply transfer MH binaries between

hosts. An example of such a tailor �le is shown in Figure 10.

A continuing question which is often raised is how intelligent should user

agents (like MH and UCB Mail) be with respect to the environment in which they

operate. At present, MH likes to determine the o�cial hostnames for addresses

when posting mail. Many argue that this is improper or unnecessary behavior

for a user agent, and that the local message transport agent should handle

these functions. Unfortunately, this implies that the message transport agent

should munge headers when mail is posted to remove local host aliases and only

permit address �elds with fully-quali�ed addresses. Sadly, neither SendMail nor

MMDF-II really gets this right (ames to /dev/null please). The current MH

maintainers believe that the resolution of host aliases to o�cial names should be

a well-supported interface with the local message transport agent. However, to

9

This simple facility is based on a more extensive tailoring capability found in MMDF-II.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 21

provide equal time to those who hold opposite views, MH supports a con�guration

option called ``DUMB'' which disables MH's attempts to resolve addresses into

fully-quali�ed strings.

Concluding Remarks

While MH has undergone signi�cant development since the original Rand

release, the authors have tried to keep the fundamental concepts of MH unchanged.

The authors have continually had to battle against well-meaning MH users who

wanted to make MH more like other (less powerful) user agents. More and more

\features" were often suggested for MH, usually at the expense of making MH

less general, and more speci�c. In nearly all cases, the \features" which these

users wanted were already present in MH in a slightly di�erent form, or could be

realized by simply writing a short shell script. A classic example is the repeated

requests by one user to have dist take a list of messages rather than a single

message and distribute each one of them in turn. A simple shell script which called

dist repeatedly, perhaps with \canned" arguments so the user typed in addressing

information only once, would easily meet this request.

A number of MH comands have a large number of options. When adding

options, the authors have tried to make the options general, while still accomodating

the requests of speci�c users. An example of a speci�c request which was

implemented as a general feature is the ``Previous-Sequence'' pro�le entry

(mentioned above). If you use this pro�le entry, every MH command is forced to

write out context changes, making every command somewhat slower. Since only a

few users wanted this capability, it was implemented in such a way that users who

didn't want it, didn't have to pay the cost of slowing down every MH command.

MH has a powerful tailoring capability provided by the .mh pro�le. Using

pro�le entries, users may customize their own environment without a�ecting others.

Novice users often take advantage of the MH-tailoring capabilities to try to make

MH work similarly to other user agents they've used. This has the advantage of

allowing them to quickly begin usingMH to handle their mail. However, since these

novice users don't take advantange of all the capabilities of MH, they frequently

will complain about things they think can't be done with MH, or could be done

\better" some other way. Fortunately, as these users become more experienced

with both MH and UNIX, they can modify their environment to take better

advantage of all of MH's capabilities. Novice MH users who see features lacking

are encouraged to take a better look at what MH can do, instead of trying to make

MH into something it isn't. This may sound rather inammatory, but it would

really be a much nicer world for us all if users of software systems would read the

manual prior to asking questions.

For a moment, let's consider the evolution of one MH feature which has

proved itself to be very useful. As users began employing MH to handle their

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 22

mail, the number of messages that could be processed in a given amount of time

increased greatly. As the volume of messages increased however, it became clear

that some MH operations were too slow, in particular the interaction with the

(slow) message transport system. To overcome this problem, the push option was

added at the What now? prompt. Originally, this option was hidden from novice

users and did little more than send the message in the background: any output

generated by the background send process would be printed asyncronously on the

terminal. If a message failed posting with the message transport system, it would

simply be left in the draft �le.

Gradually, other features were added to push. Since users wanted to be able

to send more than one draft at a time, push was changed to optionally rename

the draft �le before posting it. (This is what the hidden `-unique' option does.)

Having message transport system diagnostics written asyncronously on the user's

terminal was annoying, so push was made to intercept these diagnostics, and mail

the user a report containing them. Although the diagnostic report mailed back by

push contains the name of the draft which failed, a useful added feature was the

ability to have push include the failed draft as well. Eventually, the draft-folder

mechanism was implemented to make handling multiple message drafts much

easier.

TODO

There are, no doubt, a number of improvements which could be made to MH.

At the present time, what further development should MH su�er? Although not

by any means inclusive, here's a list:

1. Performance Enhancements

Hardware gets faster all the time, but people always complain that

software is too slow. Owing to its user interface style, MH is somewhat

slower than monolithic programs like UCB Mail. It would be nice if MH

could be tuned or accelerated somehow.

2. Port to System 5

MH runs on 4.2bsd UNIX and Version 7 variants. It should not be

di�cult to port MH to a SYS5 environment. This should signi�cantly

increase the number of hosts on whichMH can run. The authors, lacking

a SYS5 machine (and experience with SYS5) to perform the port, are

actively seeking a System 5 guru to attempt this feat.

3. Interface to the Network News

Not all sites that run MH are in the ARPA Internet, and as such the

UCI BBoards facility may not be of much use to them. A good MH

interface to the network news would allow users on hosts with a news

feed to employ the same interface for reading and sending both mail

and news.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 23

4. Programmed Instruction for Beginners

The complexity of MH is often intimidating to new users. It would be

nice to develop a set of learn lessons for those users who don't like man

pages and non-interactive tutorials.

5. Message List Expansion

At present, when a list of messages is given to an MH command, it

expands the list and processes each message in numerical order rather

than the order in which the messages were given (e.g., ``show 2 1''

shows message 1 and then message 2). It would be nice if MH processed

messages in the order they were given.

6. Context Changes

In nearly all cases, an MH command does not write out context changes

until it is about to exit successfully. There is some controversy as to

whether this is the correct behavior in all cases. Some argue that once

an MH command has fully parsed its argument list, the context should

be updated.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 24

References

[DCome83] D. Comer. The Computer Science Research Network CSnet: A

History and Status Report. Communications of the ACM 26, 10

(October, 1983), 747{753.

[DCroc79] D.H. Crocker, E.S. Szurkowski, D.J. Farber. An Internetwork

Memo Distribution Facility | MMDF. Appearing in Proceedings,

Sixth Data Communications Symposium, Asilomar, 1979, pp. 18{25.

[DCroc82] D.H. Crocker. Standard for the Format of ARPA Internet Text

Messages. Request for Comments 822. ARPA Internet Network

Information Center (NIC), SRI International (August, 1982).

[DKing84] D.P. Kingston, III. MMDFII: A Technical Review. Appearing in

Proceedings Usenix Summer '84 Conference, Salt Lake City, Utah,

1984, pp. 32{41.

[EAllm83] E. Allman. SENDMAIL | An Internetwork Mail Router.

Britton-Lee, Inc., Berkeley, California (July, 1983).

[IP] Internet Protocol. Request for Comments 791 (milstd 1777).

Appearing in Internet Protocol Transition Workbook, ARPA Internet

Network Information Center (NIC), SRI International, 1981.

[JReyn84] J.K. Reynolds. Post O�ce Protocol. Request for Comments 918.

ARPA Internet Network Information Center (NIC), SRI International

(October, 1984).

[MButl85] M. Butler, J.B. Postel, et. al. Post O�ce Protocol - Version 2.

Request for Comments 937. ARPA Internet Network Information

Center (NIC), SRI International (February, 1985).

[MRose84a] M.T. Rose. The Rand MH Message Handling System: The UCI

BBoards Facility. Department of Computer and Information Sciences,

University of Delaware (October, 1984).

[MRose85b] M.T. Rose, E.A. Stefferud. Proposed Standard for Message

Encapsulation. Request for Comments 934. ARPA Internet Network

Information Center (NIC), SRI International (January, 1985).

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 25

[SMTP] Simple Mail Transfer Protocol. Request for Comments 821. ARPA

Internet Network Information Center (NIC), SRI International

(August, 1982).

[TCP] Transmission Control Protocol. Request for Comments 793 (milstd

1778). Appearing in Internet Protocol Transition Workbook, ARPA

Internet Network Information Center (NIC), SRI International, 1981.

Appendix A

MH Commands

MH is composed of several UNIX programs, which in theory are fairly simple

and single-purposed. These commands are functionally grouped below:

Composing Mail

comp: compose a message

A program to originate a message. Usually, a special prompting editor front-

end, prompter, is used to �ll-in a composition template with the addressees

of the message, subject, and so forth.

dist : redistribute a message to additional addresses

A program that re-enters a message previously received by the user into the

message transport system. Only new addresses are added; the body of the

message is not changed in any way.

forw : forward messages

A program that encapsulates one or more messages in a new message draft.

In addition, the user may add initial and/or closing comments.

repl : reply to a message

A program that constructs a reply to a message using a reply template. The

template mechanism has su�cient generality to permit the user to \program"

the form of the reply draft based on the contents of the message being

replied-to.

send : send a message

A program that posts a draft with the message transport system. The

send program is usually invoked by one of the four preceding programs, and

performs simple front-end pre-processing prior to invoking the post program.

For example, if invoked in push'd mode, send will immediately relinquish

control of the user's terminal and post the message in the background. If

the posting fails, send will send back a failure notice to the user. If the user

had push'd the sending of the draft, then by default the draft being sent is

encapsulated in the failure notice. This permits easy burst'ing of the failure

notice to retrieve the original draft. Otherwise, if the posting was successful,

the draft is marked as having been sent.

whatnow : prompting front-end for send

A program which is called by comp, et. al., after the initial draft has been

26

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 27

generated. The MH user can specify a di�erent whatnow program, which

yields considerable extensibility.

whom: report to whom a message would go

A program which examines the addresses of the draft and expands all user-

de�ned aliases contained therein. Optionally, whom may actually interact

with the message transport system to determine the validity of the �nal

addresses. This program is also usually invoked by comp, et. al.

Posting Mail

ali : list mail aliases

A simple front-end to the MH aliasing mechanism.

ap: parse addresses 822{style

A useful debugging tool for PostMasters who wish to examine how MH

interprets an Internet address.

conict : search for alias/password conicts

Another program used by system administrators to check the consistency of

MH alias �les, and portions of the local message transport agent.

install-mh: initialize the MH environment

A program which is automatically executed the �rst time a user issues an MH

command. This program performs once-only initialization of the user's MH

environment.

mhmail : send or read mail

A simple program generally used by other programs to generate messages.

The mhmail command is similar in purpose to the old BellMail program.

post : deliver a message

A complex MH back-end that interacts with the local message transport

agent to enter messages through the posting slot. (See the description of send

above).

Reading Mail

inc: incorporate new mail

A program that interacts with the local message transport agent to retrieve

messages from the user's maildrop.

msgchk : check for waiting mail

A program which reports the status of mail waiting in the user's maildrop.

show : show (list) messages

A program which lists messages to its standard output (usually the user's

terminal), possibly invoking another program to do the actual listing. Most

users of MH have show automatically call the mhl program to format the

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 28

message. The next and prev programs are simply ``show next'' and

``show prev'', respectively.

mhl : produce formatted listings of MH messages

A program which displays a message as directed by a template. This permits

the user to �lter out uninteresting headers and re-arrange other headers to a

particular preference. In addition to being invoked by show, the mhl program

is optionally also invoked by forw to format each message being forwarded;

invoked by repl to format the body of a message being replied-to, if that

message is being included in the reply draft; and, invoked by post to format

a message being sent as a blind-carbon-copy.

rmm: remove messages

A program that removes messages from an MH folder, optionally running a

user-de�ned program instead of deleting them. If no program is given, the

messages are \softly" removed, so they may possibly be recovered later.

scan: produce a one-line-per-message scan listing

A program that generates a scan listing for messages. Each line of the listing

contains date, source, subject, and possibly the initial body of the message.

Folder Handling

folder : set/list current folder/message

A program used to list information concerning the current folder, or set the

current folder and/or message.

folders: list all folders

A program to list information on all folders (actually, just a special case of

the folder command). Since the MH folder structure may be recursive, the

user can indicate that folders should recursively examine all folders.

re�le: �le message(s) in (an)other folder(s)

A program to move (or copy) messages from a source folder to one or more

destination folders.

rmf : remove folder

A program that deletes a folder and all messages therein.

Message Selection

anno: annotate messages

A program to arbitrarily annotate messages. If the user so desires, after

distributing, forwarding, or replying-to a message, MH will automatically

attach an annotation to the original message indicating the date and addresses.

mark : mark messages

A program to manipulate user-de�ned sequences (lists of messages). Usually,

mark is not employed directly by the MH user.

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 29

pick : select messages by content

A program to examine a list of messages and choose those which meet

a particular selection criterion. The pick program is often used in UNIX

back-quoted operations to pass message sequences to other MH commands.

sortm: sort messages

A program to sort a list of messages according to the date given in a particular

�eld.

Distribution List Handling

bbc: check on BBoards

A front-end to run msh on a list of distribution lists which the user isn't

current on.

bbl : manage a BBoard

A (depreciated) program used to manually manage the local archives of

a distribution list. These functions (archiving, expunging) are performed

automatically by MH.

burst : explode digests into messages

A program used to decapsulate messages from ARPA Internet digests. In

addition, messages which have been encapsulated during forwarding (i.e.,

with forw) can also be decapsulated using burst.

10

msh: MH shell (and BBoard reader)

A monolithic program used to implement MH commands on messages

arranged in a single �le (maildrop format). Useful since distribution lists are

kept in this format to minimize consumption of system resources.

pack : compress a folder into a single �le

A program which takes messages stored in MH format and places them in a

single �le (using the same format known by msh).

Interface to the UNIX File System

mhpath: print full pathnames of MH messages and folders

A program which mapsMH-style names into the UNIX �le naming convention.

10

Similarly, blind-carbon-copies may be decapsulated, though only socially mature users should do

so.

Appendix B

Distribution Mechanics

The mh.5 distribution is available in two forms:

1. Anonymous FTP

If you can FTP to the ARPA Internet, use anonymous FTP to the

ARPAnet host UDel-Huey [10.2.0.96] and retrieve the �le portal/mh.5{

tar. This is a tar image of size 2.1 MB (approximately).

2. 9{track tape, 1600 bpi, tar format

Otherwise, you can send $50.00 to the address below. This covers the

cost of a magtape, handling, and shipping. In addition, you'll get a

laser-printed hard-copy of the MH documentation. The documentation

includes installation guide, MH Tutorial, MH User's Manual, changes

document (from mh.4 to mh.5), and BBoards Manual.

If you go with this option, be sure to include your USPS address with

your check. Checks should be made payable to

Regents of the University of California

It's also a good idea (though not mandatory) to send a computer mail

message to Bug-MH@UCI when you send your check via USPS to ensure

minimal turn-around time. The distribution address is:

Support Group

Attn: MH Distribution

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717

714/856{6852

Sadly, if you just want the hard-copies of the documentation, you still

have to pay the $50.00. The tar image has the documentation source

(the man is in ROFF format, but the rest are in T

E

X format).

In addition, there is some hope that mh.5, or a successor, might be found in a

future 4.x Berkeley distribution.

30

Reprinted from Proceedings, Summer Usenix Conference and Exhibition, Portland, Oregon, June, 1985 31

AlthoughMH is not \supported" per se, it does have a bug reporting address.

Normally, the address Bug-MH@UCI is used to report bugs and bug �xes. There are

however, two discussion groups which concern themselves with MH:

1. MH-Users@UCI

A discussion group for the MH user community at large. Appropriate

topics include: questions about how to use MH, tips on MH usage, and

exchange of MH shell scripts. All requests to be added to or deleted

from this list, along with problems, questions and suggestions, should

be sent to MH-Users-Request@UCI.

2. MH-Workers@UCI

A discussion group for MH maintainers and experts. Appropriate topics

include: questions on how to con�gure MH, tips on MH con�guration,

exchange of MH bug reports (and �xes). All requests to be added to or

deleted from this list, along with problems, questions and suggestions,

should be sent to MH-Workers-Request@UCI.

The ``UCI'' host is also known as ``ucivax'', so a possible UUCP path might

be : : : !ucbvax!ucivax!bug-mh.

Updates to MH are published on the MH-Workers list in the form of context

di�s, and the appropriate distribution images are updated as well.

Contents

Page

Introduction . 1

The MH Philosophy . 2

The MH Environs . 3

An MH Transcript. 5

Some MH Features . 5

Message Sequences and Selection . 5

Draft Handling. 7

BBoards . 8

Bursting . 10

Distributed Mail . 11

User Interface Issues in MH . 12

Creeping Featurism . 12

Templates versus Switches. 13

Modularity versus Monolithicity . 17

The MH Distribution . 17

Con�gurable MH . 18

Interface to the Message Transport System 20

Concluding Remarks . 21

TODO . 22

References . 24

Appendix A: MH Commands . 26

Appendix B: Distribution Mechanics. 30

This document (version #1.43) was T

E

Xset April 12, 1990 with DISS.STY v103.

i

