
MH: A Multifarious User Agent

Marshall T. Rose

Member, Research Technical Sta�

Northrop Research and Technology Center

y

Einar A. Ste�erud

President, Network Management Associates

z

and Visiting Lecturer, University of California, Irvine

Jerry N. Sweet

Member, Technical Sta�

Local Network Systems

./

Abstract

The UCI version of the RandMessage Handling System (MH) is discussed, including

important extensions. MH is a powerful user agent which operates in the ARPA

Internet and UUCP environments. In addition to the basic functions provided

by a user agent, such as reading and sending mail, MH has several distinguishing

characteristics which give the user additional message handling capabilities. In

particular, MH provides mechanisms for organizing messages, tailoring its own

behavior, and extending its functions.

This document describes MH from several perspectives. Particular emphasis is

given to: the MH user environment, advanced features of MH which have proven to

be particularly useful for sophisticated users of electronic mail, MH's potential as

a record manager, and MH as a part of a distributed mail environment. Although

MH as been widely used since its creation in 1979, a discussion of its perspectives

and functionality has not appeared in the open literature.

y

One Research Park, Palos Verdes Peninsula, CA 90274. Telephone: 213/377{4811.

Computer mail: MRose%NRTC@USC-ECL

z

17301 Drey Lane, Huntington Beach, CA 92647. Telephone: 714/842{3711.

Computer mail: EStefferud@ICS.UCI.EDU

./

130 McCormick Avenue, Suite 102, Costa Mesa, CA 92626. Telephone: 714/754{6631.

Computer mail: JSweet@ICS.UCI.EDU

MH: A Multifarious User Agent

Introduction

The UCI version of the Rand Message Handling System, MH, is a user agent.

In the interests of brevity, we dispense with the usual de�nition of terms, refer the

reader to Figure 1, and simply note that MH is not responsible for delivering mail.

Rather, it interacts with a message transport system, MTS, at two interfaces: it

sends mail by placing it through a posting slot to the MTS, and it receives mail by

retrieving it through a delivery slot from the MTS. Besides these two MTS-speci�c

activities, the tasks which MH addresses are: the composition of messages (which

may, or may not, be in reference to previously sent messages), the reading of

messages, and the organization of messages.

MH was originally developed by the Rand Corporation, and initially was

proprietary software. The Department of Information and Computer Science

at University of California, Irvine, shortly after joining the Computer Science

Network (CSnet), acquired a copy of MH, and began additional development of

the software. Since that time, the Rand Corporation has declared MH to be in the

public domain, and the UCI version of MH has passed through four major releases.

Much credit must be given to the initial designers and implementors of MH:

Bruce Borden, Stockton Gaines, and Norman Shapiro. Although MH has su�ered

signi�cant development at UCI since Rand's initial release, the fundamental

concepts of MH's environs have remained nearly unchanged. In addition, the

current maintainers of MH gratefully acknowledge the comments of the many sites

which have run various releases of MH in the past.

MH runs on di�erent versions of the UNIX

1

operating system (such as

4.2bsd UNIX and various
avors of v7 UNIX). In addition, MH supports four

di�erent MTS interfaces: SendMail[EAllm83], the standard mailer for 4.2bsd

systems; MMDF[DCroc79] and MMDF-II[DKing84], the Multi-Channel Memo

Distribution Facility developed by the University of Delaware which forms the

software-backbone for CSnet[DCome83] mail relays service; SMTP, the ARPA

Internet Simple Mail Transfer Protocol[SMTP]; and, a stand-alone delivery system.

The organization of this paper is straight-forward, given space considerations.

Initially, the MH philosophy of mail handling is presented, along with a description

of the environment which the MH user is given to process mail. Following this,

certain advanced features of MH are discussed in more detail. In particular, the

1

UNIX is a trademark of AT&T Bell Laboratories.

Copyright
c

 1985, North Holland Publishing Company 1

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 2

UA

MTA MTA : : : : : : MTA

UA

MTS

POSTING RECEIPT

RELAYING

Figure 1

MTS model

notion of a draft folder is introduced, which permits the handling of multiple drafts

during composition. In addition, message selection facilities are described. Next,

two di�erent aspects of MH's power as a software system are discussed: record

handling, in which MH facilitates record processing systems; and, how MH can be

employed in a distributed mail environment. This latter section raises questions

as to the location of the posting and delivery slots, along with authentication

mechanisms. Finally, we conclude by discussing areas of future development which

MH may endure.

Although familiarity with MH is not assumed on the part of the reader,

some knowledge of the UNIX operating system is useful. Appendix A gives a short

synopsis of the MH commands.

The MH Philosophy

Although MH has many traits which tend to di�er it from other user agents,

the design aspect which fundamentally in
uences the interface between MH and

the user is that it is composed of many small programs instead of one very large

one. This architecture gives MH much of its strength, since intermediate and

advanced users are able to take advantage of this
exibility.

The key to this
exibility is that the UNIX shell (usually the C shell or the

Bourne shell), is the user's interface to MH. This means that when handling mail,

the entire power of the shell is at the user's disposal in addition to the facilities

which MH provides. Hence, the user may intersperse mail handling commands

with other commands in an arbitrary fashion, making use of command handling

capabilities that the user's shell provides.

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 3

Furthermore, rather than storing messages in a complicated data structure

within a monolithic �le, in MH, each message is a UNIX �le, and each folder (an

object which holds groups of messages) is a UNIX directory. That is, the directory

and �le structure of UNIX is used directly. As a result, any UNIX �le-handling

command can be applied to any message.

To the novice, this may not make much sense or may not seem important.

From three years of observation, we have seen that as users of MH have become

more experienced they have found this capability to be quite attractive. In

addition, this approach is often quite pleasing to system implementors, because

it minimizes the amount of coding to be performed and, given a modular design,

changes to the software system can be maintained easily. Our empirical �ndings

con�rm our theoretical expectations regarding the MH architecture.

Having described how MH �ts into the UNIX environment, we now discuss

the mail handling environment which is available to the MH user.

The MH Environs

MH provides a complementary environment to the user's shell. While the

shell maintains a context related to the user's focus in the �le system (a current

working directory), mail handling is performed in a separate mail folder context.

Operations on mail can therefore be performed entirely without regard to the

current �le system context, although MH does not prevent the user from making

use of that context. Certain mail handling functions do make use of information

maintained by the shell. For instance, by setting certain shell parameters, called

environment variables, alternate mail handling contexts can be selected.

MH conventions often have direct analogs to shell or �le system conventions.

The shell has a current working directory; MH has a current mail folder. When

the user begins a session on the system, the user's \home directory" is the base

context; MH's default base area, the Mail directory, is found under the user's home

directory. The user's default shell parameters are set upon beginning a new session

from a startup pro�le (called .pro�le for sh users or .cshrc for csh users); the default

parameters for MH commands are taken from a �le called .mh pro�le in the user's

home directory. The shell has an environment ; MH has a context �le. Each of the

user's directories has �les; each of the user's MH folders has messages.

These parallels have a basis not only in MH's high level mail handling model,

but also in the way low level shell and �le system conventions have been abstracted

to implement MH conventions. Directories are folders; �les are messages. The Mail

directory forms the root of a virtual �le subsystem within which the user operates

on mail without disturbing �les outside this mail handling domain.

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 4

$HOME/ (user's home directory)

.mh pro�le

Mail

context

inb ox/ mhl.format replcomps drafts/ chron/

321

sequences

yr.1985/yr.1984/

1

Figure 2

MH File Subsystem

(directories are shaded)

The MH Pro�le

The .mh pro�le contains plaintext that describes the user's default mail

handling parameters. An example of an elaborated pro�le is shown in Figure 3.

Each line in the pro�le consists of an MH parameter name terminated with

a colon (`:') followed by parameter values. In this example, \global" parameters

are listed in the �rst few lines, with program-speci�c parameters following. Each

MH program examines global parameters as well as any parameter with the same

name by which the program was invoked. For example, the comp program, which

is used to compose new messages to be sent, examines the entries:

Path: The path parameter speci�es the name of the MH root directory.

This is normally named Mail.

Editor: The editor parameter speci�es which text editor is �rst invoked

to create the header information and body of a message draft. In

most cases, this editor is the MH default editor, prompter.

Draft-Folder: This parameter speci�es a folder within which new message drafts

are to be created. The draft folder mechanism is an advanced

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 5

Path: Mail

Editor: prompter

prompter-next: emacs

Folder-Protect: 700

Msg-Protect: 600

Previous-Sequence: pseq

Alternate-Mailboxes: jsweet@uci-icse, jsweet@uci-750a

Draft-Folder: drafts

Sequence-Negation: not

bbc: -quiet

bboards: system mh-workers sf-lovers whimsey

comp: -form mycomponents

dist: -annotate -inplace

folder: -noheader

forw: -annotate -inplace -format

mhl: -noclear

next: -noheader

prev: -noheader

prompter: -prepend

repl: -annotate -inplace -cc me

send: -format -msgid

scan: -noheader -time

show: -noheader -format

showproc: mhl

Figure 3

Elaborated MH Pro�le

feature of MH that is given separate treatment in a later segment

of this paper.

comp: The program-speci�c parameter examined by comp lists user-

default options.

Other programs invoked by comp (e.g. prompter and send) would examine their

own pro�le entries as well. MH programs have reasonable compiled-in defaults

and also permit options to be speci�ed on the shell command line with which the

programs are invoked. The order of override precedence is: command line options

�rst, .mh pro�le options second, and compiled-in defaults last.

Each program option is pre�xed by a dash (`-') following the UNIX convention.

Unlike most UNIX-style options, however, the options are words rather than single

letters. An option may be abbreviated to an unambiguous pre�x. Each MH

program has a `-help' option that displays a brief summary of the program's

available options.

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 6

Folders and Messages

In a typical paper-oriented o�ce, new correspondence arrives and is stacked

in an \in box", while outgoing correspondence is placed in an \out box". Processed

material is stored in appropriately labelled folders and �led away for future

reference. This state of a�airs is modelled in MH with folders and messages, which

are simply text �les (one message per �le) stored under the folder directories. Most

of the user's folders are kept under the Mail directory.

A folder is given an alphanumeric name permissible within the UNIX �le

system structure, and each message stored therein is given a numeric name in the

range 1..1999. The upper bound on message numbers was selected for e�cient

access to an internal representation, an array of bits (a \bit set"), with each bit

indicating the presence or absence of a message with a number in the range 1..1999.

This internal representation also restricts the order of multiple message reference

to an ascending numerical sequence. Other representations have been studied

(e.g., an unsorted sparse array of integers), but have been rejected for reasons of

e�ciency. Folders may contain subfolders, corresponding to UNIX tree-structured

directories. For the sake of completeness, it might be said that \sub-messages"

exist insofar as message \digests", which nest messages inside other messages, are

supported by certain advanced MH functions.

The current working folder is the default folder selected for almost all MH

commands. To select explicitly a folder for mail handling commands entails

specifying the name of the folder, pre�xing the name with a plus-symbol (`+'). An

example is:

refile 1 2 3 +chron/yr.1984

This command re-�les the selected messages (1, 2, and 3 here) from the current

working folder to a subfolder under the folder chron named yr.1984. To see the

folder/subfolder relationship, refer to Figure 2.

The plus-symbol notation is speci�c to those folders immediately subordinate

to the Mail directory. This is analogous to \absolute pathnames" in UNIX|those

�les whose positions in the �le system hierarchy are given starting with the system

root, names pre�xed with the slash character (`/'). To specify folders subordinate to

the current working folder, an at-sign (`@') is substituted for (`+'). It is permitted

to use UNIX dot notation to specify parent folders. Referring to Figure 2, if the

current working folder were ``+chron/yr.1985'', then the command

folder @../yr.1984

selects the subfolder yr.1984 in the parent directory chron, as the new current

working folder. While the current working folder is normally the default, it may

be speci�ed explicitly as ``@.''.

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 7

To: <reply-to|from>

cc: <?to|cc|me><to>,<cc>,<me>

Subject: <?subject>Re: <subject>

In-reply-to: <?date><?message-id>Your message of <date>.

<message-id>

In-reply-to: <?date><!message-id>Your message of <date>.

Fcc: <?fcc><fcc>

Figure 4

Elaborated Reply Template

The Context File

The .mh pro�le contains static information about the user's preferences. A

context �le, contained in the Mail directory, contains the current mail handling

environment information, which changes as di�erent folders, messages, and named

message lists (called message sequences) are selected, created, and updated. This

information is retained between invocations of MH commands, and is preserved

across system sessions.

Templates

The message draft composition functions (comp, repl, forw, and dist) use

certain default header formats, which may be changed by the user through the use

of message templates. The exact format of a template may vary among commands.

An example of an elaborated template for the reply command repl is shown in

Figure 4.

This template speci�es how the automatically-generated header for a draft

message in reply to a source message is to be formatted. The syntax is capable of

directing output of header lines based on the presence or absence of other header

lines in the source message.

Other kinds of templates are used to specify the display formats of messages,

or to specify the way that messages are to be included in other messages. This is

similar to the functionality provided by BBN Hermes[HERMES], another powerful

mail handling system for Tops20

2

based systems.

Explaining All This to New Users

There do exist people who do not like MH.

3

The emerging pattern of

complaints from such people indicates that MH accentuates their perceptions of

the de�ciencies of UNIX, to wit, lack of interactivity and lack of easily found help

facilities. Also, some feel that the proximity of the mail handling environment

to the operating system is a distraction, rather than an asset. There have been

2

Tops20 is a trademark of Digital Equipment Corporation.

3

At UCI, these people are reported to be weeded out at an early stage and quietly taken to the

Ministry of Love to be made uncrimethinkful.

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 8

some attempts to make MH more accessible to users who prefer menu-oriented or

monolithic mail system interfaces.

4

In truth, users new to UNIX do not always acclimate to MH easily. The

command set is undistinguishably mixed in with all other UNIX utilities, and it

is not easy, without aid of a manual, to pick out the necessary commands. MH

does not provide any \hand-holding" to guide the user through a minimally useful

command subset.

Another problem is that the initial default user pro�le is too often sparse,

containing only a ``Path:'' parameter. MH commands will perform adequately

without speci�c information in the pro�le, so new users often neglect optionally

useful MH capabilities, eventually becoming frustrated with the limited default

capabilities, yet unable to determine without researching through the user's

manual, the necessary options that would solve their problems.

The currently available means for learning how to use MH are:

� One-on-one tutoring by knowledgeable MH users, which has so far

shown the best results with new users.

� Consulting the MH Tutorial [MRose84b], or the MH User's

Manual [MRose85a].

� Using the msh (\MH shell") program as a training shell to read

bulletin boards. The msh command is an interactive program that

provides some help messages and can list available MH commands.

No on-line tutorial materials are presently distributed with the mh.5 system,

although there are some plans in the works to provide a program to help with

setting up the user pro�le that would also provide operational tips for MH and

UNIX.

It should be noted that these perceived defects of MH do not a�ect its utility

any more than analogous problems with any operating system will diminish its

actual capabilities. Users may quarrel with the means chosen for orchestrating

MH, but the fact remains that MH is a very useful set of mail handling tools that

is
exible, in�nitely interoperable with other UNIX text handling tools, and yet

simple enough for new users to grasp once they are given the proper start. The

fact that better tutorial materials and training do not exist only means that some

further work needs to be done in the area of user-education.

4

For example, mhe from Brian Reid of Stanford University and emh from Marshall Rose are

instances of macro packages for James Gosling's EMACS extensible editor, while the hm program

from Jim Guyton of the Rand Corporation is a monolithic MH interface. As of this writing, none

of these programs is documented in the literature.

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 9

A Few Advanced Features

We now consider certain advanced features in MH. These features have been

chosen to demonstrate some useful capabilities available to the MH user. It should

be noted that many capabilities of MH, such as shell scripts for extensibility, mail

delivery hooks, the personal aliasing facility, and so forth, are not described here

for lack of space.

Draft Folders

The draft folder facility provides a method by which several message drafts can

be simultaneously composed andmaintained until sent. The rationale for this is that

partially composed message drafts, perhaps elaborate sets of separate messages,

can be incrementally completed, while a folder provides a consistent organization

for drafts in progress. This is comparable to similar situations in the \paper world"

where contracts, business correspondence, and other communications, rather than

being created serially with each posted in turn before composing the next, are

usually left in various stages of completion before they are eventually mailed.

The ``Draft-Folder:'' parameter value in the MH pro�le is used to specify

a default draft folder, where each draft is given a number and an \arti�cial" date

stamp. Provided that the proper header �elds have been completed, a scan listing

of the draft folder provides a summary of each draft in progress: to whom the

message is to be sent, the subject, the date of the draft's initial creation and

optionally, the current size of the draft in terms of characters. Experienced users

of MH may often keep as many as �ve to ten un�nished drafts in their draft folder.

\Draft clutter" can be remedied easily with the rmm command.

Message Selection

MH commands accept message sequence speci�cations to specify which `msg'

or `msgs' are to be operated upon. Here are some examples:

scan 1 3 5 19 185

to get a scan listing of messages 1, 3, 5, 19 and 185.

scan pseq

to get a scan listing of whatever message sequence was given to the previous MH

command (in this case 1, 3, 5, 19, and 185).

show first last

to get a display of the �rst and last messages in the folder. The MH sequences

named ``first'' and ``last'' are system de�ned pseudo sequences which act like

explicit sequences when given to MH commands. Others are ``cur'', ``next'',

``prev'', and ``all'' which respectively specify the \current" message, the

\next" after cur, the \previous" message before cur, or \all" messages in the

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 10

current-folder. The scan assumes ``all'' while show assumes ``cur'', unless

overridden on the command line. Over-ride precedence is: command-line �rst,

.mh pro�le second, and compiled-in default last.

Users can de�ne additional sequences for similar use, but must avoid using

reserved names. A few optional sequence names have been preempted by MH, such

as ``pseq'' to mean the \sequence used by the previous MH command," and

``unseen'' to mean the \messages not yet seen by the user." Sometimes these

preempted names can be changed by resetting them in the user's MH pro�le, but

these facilities are beyond the scope of this discussion.

The mark command can be used to set the values for user-de�ned sequences:

mark 1 3 5 -seq zzz

mark 4 5 9 -seq zzz -nozero

will create a user-sequence named ``zzz'' and put the sequence ``1 3 5'' in it.

The mark command assumes that any prior content in an existing user-sequence

should be \zeroed" before the new sequence value is recorded. This can be

prevented with a `-nozero' switch on the command line, to add ``4 5 9'' to

the original ``1 3 5'' to yield ``1 3 4 5 9''.

mark pseq zzz -seq zzznew

will create a new sequence named ``zzznew'' and set its value to the combined

(inclusive or) of the existing user-sequences in ``pseq'' and ``zzz'' for its value.

Another more powerful way to set the values of a user-sequence is with the

pick command, which provides full string search capabilities:

pick -from mrose -seq yyy

pick -from mrose -seq yyy -list

will search though all the ``From:'' �elds in the current folder for the string

``mrose'' and place the list of \hits" in the sequence named ``yyy''. The

`-list' switch will cause the resulting list to also be displayed on the user's

terminal. If no `-seq name' switch is given, pick will assume `-list' and will

simply display the resulting list of hits on the user's terminal.

This `-list' behavior of pick allows users to take advantage of the UNIX

backquoting facility to embed searches in other MH commands.

scan `pick -from mrose`

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 11

will produce a scan listing of `-from mrose' hits because the UNIX shell will

spawn a process to execute the ``pick -from mrose'' segment and return the

`-list' results as the message sequence to be scanned.

mark pseq -seq zzz

could then be used to capture the \previous sequence" in zzz for later use.

One last facility should be mentioned here. It is also possible to negate a

sequence to specify a new sequence. The default negation string is ``not''.

scan notzzz

mark notzzz -seq zzznot

will give the user a scan listing of all the messages in the current folder that are

not included in the sequence ``zzz''. The mark example will of course record

the negation of zzz in zzznot. It is a bad idea to use the string ``not'' as the

beginning of any user-sequence name, if ``not'' is de�ned as the negation string.

(Users can choose a di�erent negation string.)

From this discussion, it should be clear that MH provides a uniform set of

ways to capture and use sequences to augment the user's short- and long-term

memory and to manipulate lists of interesting messages. User-sequences are

normally stored as RFC822 labeled text lines in a �le (e.g., sequences) in the folder

with the messages referred to in the sequence. If a user does not have write access

to a folder, then the MH mark and pick commands will create a \private" sequence

in the user's context �le. Switches are available to give the user control over the

choice of `-private' or `-public' sequence options.

Since user-sequences are stored as ordinary text lines in RFC822 labeled �elds,

there is no prohibition against someone writing programs to perform any kind of

useful manipulation on MH sequences. Boolean operators can be implemented,

or complex indexing structures could be developed to serve special purposes. If a

DBMS can utilize UNIX pathnames or MH `+folder' and message names, then

the full power of the DBMS might be applied. The intention of MH development

teams has always been to leave open the widest possible array of options for

later extension. The only restrictions should be the user's ingenuity, programming

prowess, and the available machine resources. Unfortunately these resources always

seem to be available in limited quantities.

Distribution Lists

MH has a convenient interface to the UCI BBoards facility[MRose84a].

5

This

facility permits the e�cient distribution of interest group messages on a single

5

The UCI BBoards facility can run under either the MMDF or SendMail, or in a more restricted

form under stand-alone MH.

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 12

host, to a group of hosts under a single administration, and to the ARPA Internet

community.

Described simply, an interest group is composed of a number of subscribers

with a common interest. These subscribers post mail to a single address, known

as a distribution address (e.g., MH-Workers@UCI). From this distribution address,

a copy of the message is sent to each subscriber. Each group has a moderator,

which is the person that runs the group. This moderator can usually be reached

at a special address, known as a request address (e.g., MH-Workers-Request@UCI).

Usually, the responsibilities of the moderator are quite simple, since the mail

system handles distribution to subscribers automatically. In some interest groups,

instead of each separate message being distributed directly to subscribers, a batch

of (related) messages are put into a digest format by the moderator and then sent

to the subscribers. Although this requires more work on the part of the moderator

and introduces delays, such groups tend to be better organized.

Unfortunately, some problems arise with the scheme outlined above. First, if

two users on the same host subscribe to the same interest group, two copies of the

message will be delivered. This is wasteful of both processor and disk resources at

that host.

Second, some groups carry a lot of tra�c. Although subscription to a group

does indicate interest on the part of a subscriber, it is usually not interesting to get

50 messages or so delivered to the user's private maildrop each day, interspersed

with personal mail, that is likely to be of a much more important and timely

nature.

Third, if a subscriber's address in a distribution list becomes \bad" somehow

and causes failed mail to be returned, the originator of the message is normally

noti�ed. It is not uncommon for a large list to have several bogus addresses. This

results in the originator being
ooded with \error messages" from mailers across

the Internet stating that a given address on the list was bad. Needless to say, the

originator usually does not care if the bogus addresses got a copy of the message

or not. The originator is merely interested in posting a message to the group at

large. On the other hand, the moderator of the group does care if there are bogus

addresses on the list, but ironically does not receive noti�cation.

To solve all of these problems, the UCI BBoards facility introduces a new

entity into the picture: all interest group mail is handled by a special component of

the mail system. The distribution address maps to a special channel that performs

several actions. First, if local delivery is to be performed, then a copy of the

message is placed in a global maildrop for the interest group with a timestamp and

a unique number. Local users can read messages posted for the interest group by

reading this \public" maildrop. Second, if further distribution is to take place, a

copy of the message is sent to the distribution address in such a way that if any of

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 13

the addresses are bogus, failure notices will be returned to the local maintainer of

the group address list, rather than the originator of the message.

This scheme has several advantages: First, messages delivered to the local

host are processed and saved once in a globally accessible area. The UCI BBoards

facility supports software which allows a user to query an interest group for new

messages and to read and process those messages in the MH-style. Second, once

a host administrator subscribes to an interest group, each user can join or quit

the list's readership without contacting anyone. Third, a hierarchical distribution

scheme can be constructed to reduce the amount of delivery e�ort. Fourth, errors

are prevented from propagating. When an address on the distribution list goes

bad, the list moderator who is immediately responsible for the address is noti�ed.

If a local moderator does not exist, then the local PostMaster is noti�ed (not the

global group moderator).

In addition to solving the problems outlined above, the UCI BBoards facility

supports several other capabilities. BBoards may be automatically archived in

order to conserve disk space and reduce processing time when reading current

items. Also, the archives can be separately maintained on tape for access by

interested researchers.

Special alias �les may be generated which allow the MH user to shorten

address type-in. For example, instead of sending to SF-Lovers@Rutgers, a user

of MH usually sends to ``SF-Lovers'' and the MH aliasing facility automatically

makes the appropriate expansion in the headers of the outgoing message. Hence,

the user need only know the name of an interest group and not its global network

address.

Finally, the UCI BBoards facility supports private interest groups using the

UNIX group access mechanism. This allows a group of people on the same or

di�erent machines to conduct a private discussion.

The practical upshot of all this is that the UCI BBoards facility automates the

vast majority of BBoards handling from the point of view of both the PostMaster

and the user.

MH provides three programs to deal with interest groups. The bbc program

is used to check on the status of one or more groups, and to optionally start an

MH shell on those groups which the user is interested in. The bbl program can be

used to perform manual maintenance on a discussion group beyond the normal

automatic capabilities of the UCI BBoards facility. Finally, the msh program

implements an MH shell for reading BBoards, in which nearly all of the MH

commands are implemented in a single program.

Observant readers may note that the use of msh is contrary to the MH

philosophy of using relatively small, single-purposed programs. Sadly, the authors

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 14

admit that this is true. In an e�ort to avoid some problems with shared-access and

message naming conventions (which are beyond the scope of this paper), BBoards

are kept in maildrop format (monolithic) instead of folders. Some research has

gone into overcoming this problem in order to restore MH's purity of purpose, but

all solutions proposed to date are either unworkable or require signi�cant recoding

of MH's internals.

Encapsulation

As described above, some interest groups appear in digest form. This

means that the messages which appear in such a forum actually encapsulate other

messages in their body. It turns out that the generation of a digest is not at

all unlike the generation of a draft which forwards one or more messages. In

RFC934[MRose85b], a method is proposed to standardize message encapsulation

for the ARPA Internet community. MH uses this method for the generation of

digests, forwardings, and blind-carbon-copies.

A key requisite for using an encapsulation technique for digests and

forwardings is the ability to later decapsulate the contents. Without this ability,

the forwarded messages are of little use to the recipients because they can not be

distributed, forwarded, replied-to, searched-for, or otherwise processed as separate

individual messages. In the case of a digest, a bursting capability is especially

useful. Not only does the ability to burst a digest permit a recipient of the digest

to reply to an individual digesti�ed message, but it also allows the recipient to

selectively process the other messages encapsulated in the digest.

For example, a single digest issue usually contains more than one topic. A

subscriber may only be interested in a subset of the topic discussed in a particular

issue. With a bursting capability, the subscriber can burst the digest, scan the

headers, and process those messages which are of interest. The others can be

ignored, if the user so desires.

Note that with proper encapsulation technology, one can argue for the

re-distribution of messages simply becoming special cases of message forwarding.

For example, the NBS Standard for Mail Interchange[FIPS98] and the recent

CCITT draft on Mail Handling Systems standards[X.400] both discourage the

re-distribution facility in favor of forwarding by encapsulation.

Encapsulation and Blind-Carbon-Copies

Many user agents support a blind-carbon-copy facility. MH implements this

using a form of encapsulation. It may not be apparent to the reader as to why

encapsulation of the original message is a good way to deliver blind-carbon-copies.

With a blind-carbon-copy facility, two types of addressees are possible in the draft

to be sent: visible and blind. The visible recipients are listed as addresses in the

``To:'' and ``cc:'' �elds, and the blind recipients are listed in the ``Bcc:''

�elds of the draft. The idea behind this facility is that copies of the draft which are

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 15

delivered to the ``To:'' and ``cc:'' recipients should show the visible recipients

only.

A major concern with a blind-carbon-copy facility is that blind recipients

should be prevented from accidentally replying to the message in such a way that

the visible recipients are included as addressees in the reply.

There are several methods to implement this facility. Most rely on posting

two drafts with the MTS. One draft is destined for visible recipients, and simply

lacks the ``Bcc:'' �elds of the original draft. The second draft is destined for the

blind recipients. The question then arises as to what form this latter draft posted

should take.

One approach might be to disable the ``To:'' and ``cc:'' �elds of the

draft sent to the blind recipients (e.g., by pre�xing the string ``BCC-'' to these

�elds). Unfortunately, this is often very confusing to the blind recipients because

it di�ers from what the visible recipients got. Although accidental replies are not

possible, it is often di�cult to tell that the message received is the result of a

blind-carbon-copy.

The method used by MH is to post two drafts, a visible draft for the visible

recipients, and a blind draft for the blind recipients. The visible draft consists

of the original draft without any ``Bcc:'' �elds. The blind draft contains the

visible message as a forwarded message. The headers for the blind draft contain

the minimal RFC822 headers (``From:'' and ``Date:'') and, if the original

draft had a \Subject:" �eld, then this header �eld is also included. In addition,

MH alerts the recipient that the message is a blind-carbon-copy by placing this

information in the initial encapsulation information in the blind recipient's copy.

This scheme prevents inadvertent replies while allowing the recipient full access to

an exact copy of what was sent to the visible recipients.

MH as a Record Handler

Although message format standards such as RFC822 (and its predecessors)

were originally devised to facilitate computer processing of interpersonal messages,

there is no special reason why the concept should be limited to interpersonal

message processing. Messages are just one of a variety of useful record forms that

might be created in one place and transfered to another for processing. In this

regard, RFC822 wisely left open the option for higher level applications to use

arbitrary header names or �eld contents by proscribing MTS use of header names

beginning with ``X-''.

MH carries though on this idea by allowing the pick command to accept any

arbitrary �eld name for string searches, so MH users can select on any arbitrary

�eld name without prior de�nition. Beyond this, since all messages are simply �les

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 16

in UNIX directories, applications can be developed to apply any programmable

process to any selected message.

For example, a Time Card Form might be called up by an MH user with

comp -form timecomps

to enter time and attendance information into ``X-time: : : :'' �elds in a draft

message record. The timecomps form would include the address of a supervisor

who should validate the information, along with empty �elds to be �lled in with

data. In fancy applications, this might be done with a sophisticated interactive

data entry tool which would validate entered information, but this is an open choice

within the MH framework. Another alternative would be to use a received message

as the blank form to add a degree of central control over time and attendance

reporting forms.

Receiving supervisors could simply register approval by using the MH dist

command to resend subordinates' time cards to higher approval levels, or to send

them to a time card collection address. The MH dist command automatically

inserts \ReSent" header �elds showing who resent it and the resending date.

Alternatively, the MH forw command could be used to transfer a batch of approved

time cards to the next processing station. If desired, a new \approval" command

could be programmed to provide a more trusted authentication, perhaps with

encryption of the content. Trusted mail systems, such as Trusted Mail

6

[MRose85c],

are becoming available for this purpose.

At the �nal collection destination, an automated User Agent could be

programmed to directly load the data into the Time and Attendance DBMS by

parsing and decoding the data contained in the ``X-time: : : :'' �elds. It might be

noted that while the RFC822 does not restrict the internal forms of messages, it is

necessary to conform to the interchange standard if specialized �lters for message

headers are not to be built to serve as export laundries (a term originating with

Stephen H. Willson to describe conformance transformations in Ada

7

).

Mapping Between Record Modes (DBMS/MHS)

This time and attendance example suggests that it is possible to de�ne one-to-

one mappings between RFC822 �elds and DBMS data elements. For every DBMS

data element de�nition, there is a potential corresponding RFC822 transferable

equivalent de�nition which can facilitate mail transfers of record information.

Indeed, a large portion of the de�nitional work is already done where a Data Base

has already been de�ned. All that remains is to de�ne the RFC822 equivalents.

6

Trusted Mail is a trademark of Trusted Technologies, Incorporated.

7

Ada is a trademark of the Department of Defense (Ada Joint Program O�ce).

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 17

The suggestion that a batch of time cards be forwarded inside a \cover"

message implies that it is possible in the MH framework to recursively bundle

messages within messages, and be able to recover the originals for separate

processing at a receiving destination. The MH burst command can be applied

recursively for this purpose becauseMH encapsulation uses an unambiguous scheme

to delimit messages that are enclosed inside other messages. Thus, it should be

possible to extract a structured set of records from a DBMS and mail the set to a

foreign site for processing, or reinsertion into another DBMS. As long as the DBMS

data element de�nitions correctly correspond to the RFC822 de�nitions, it is not

even necessary for the source and destination DBMS systems to be the same.

From this discussion, it is concluded that the MH framework can be useful

for building distributed record handling systems where people at widely scattered

locations must create and submit record forms for processing at distant locations.

This might prove to be especially e�ective when a mail system is also needed

for other communication purposes. A network of sales o�ces is a good example,

where general message service would be used for communications with remote

manufacturing and distribution centers, and could also be used for an order entry

system.

Another example might be for structured communications, as occur in

requisition and purchasing systems. Requisitions could be �lled in and mailed to

approval o�ces, and resent or forwarded to others for action. At some point, the

requisitions could
ow into other other more suitable processing systems as needed.

At the very least, the ability to originate requisitions can be distributed to anyone

with access to a mail system that can originate a proper requisition form.

As a last example, MH already supports group discussions with its BBoard

facilities which allow for automatic sorting of mail by group address, with shared

private or public group access to contributed items. As has been shown to be

possible with administrative record systems, there is no obvious limit to the ways

that group discussion tra�c might be organized into structured collections with

indices, annotations, or reference pointers to aid in making conference archives

more useful. Indeed, MH tools could even be used to feed discussion items into

existing conference systems.

Distributed Mail

Next, we consider how MH might be used in a distributed mail environment.

Two schemes are discussed: one in which connectivity is high and connections

are relatively \cheap", and one in which connectivity is low and connections are

\expensive".

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 18

The ARPA Internet Environs

The ARPA Internet community consists of many types of heterogeneous

nodes. Some hosts are large mainframe computers, others are personal work-

stations. All communicate using the milstd TCP/IP protocol suite[IP, TCP].

Messages which conform to the Standard for the Format of ARPA Internet Text

Messages[DCroc82] are exchanged using the Simple Mail Transfer Protocol[SMTP].

On smaller nodes in the ARPA Internet it is often impractical to maintain

a message transport agent. For example, a workstation may not have su�cient

resources (cycles, disk space) in order to permit an SMTP server and associated

local mail delivery system to be kept resident and continuously running.

Furthermore, the workstation could be o�-net for extended periods of time.

Similarly, it may be expensive (or impossible) to keep a personal computer

interconnected to an IP-style network for long periods of time. In other words, the

node is lacking the resource known as \connectivity".

Despite this, it is often desirable to be able to process mail with MH on

these smaller nodes, and they often support a user agent to aid the tasks of mail

handling. To solve this problem, a network node which can support a message

transport entity (known as service host) o�ers a maildrop service to these less

endowed nodes (known as client hosts). The Post O�ce Protocol[JReyn84] (POP)

is intended to permit a workstation to dynamically access a maildrop on a service

host to pick-up mail.

8

The level of access includes the ability to determine the

number of messages in the maildrop and the size of each message, as well as to

retrieve and delete individual messages. More sophisticated implementations of the

POP server are able to distinguish between the header and body portion of each

message, and send n lines of a message to the POP client. This capability is useful

in thinly connected environments where conservation of bandwidth is important.

By utilizing a more intelligent POP client, a user may generate \scan listings" and

dynamically decide which messages are worth taking delivery on. The philosophy

of the POP is to put intelligence in the POP clients and not the POP servers.

The underlying paradigm in which the POP functions is that of a split-

slot/remote-UA model. The client host (such as a workstation) is without a

co-resident message transport agent (MTA), and thus makes use of a service host

with an MTA to obtain posting (SMTP) and delivery (POP) services. The entity

which supports this type of environment is called a remote-UA since the user agent

resides on a di�erent host than its associated message transport agent.

8

Actually, there are three di�erent descriptions of the POP. The �rst, cited in [JReyn84], was the

original description of the protocol, which su�ered from certain problems. Since then, two alternate

descriptions have been developed. The o�cial revision of the POP[MButl85], and the revision of the

POP which MH uses (which is documented in an internal memorandum in the MH release). This

paper considers the POP in the context of the MH release.

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 19

One very important issue which must be raised at this point is one of

authentication. The POP requires that a client identify itself to the server using

a server-speci�c user-id and a server/user-speci�c password. This authentication

is required to prevent unauthorized entities from accessing a maildrop on a POP

service host. It must be emphasized that the POP client is not a \trusted" entity

of the MTS in any sense at all.

Ideally, one would also like to authenticate mail as it is posted on the POP

service host using the SMTP. Currently, in the ARPA Internet community, no

authentication is done with SMTP transactions. This is considered a shortcoming

by those interested in researching the split-UA model of distributed mail. The

MZnet environment, discussed in the next section, has authentication facilities for

posting mail.

The current release of MH supports the above model fully: a POP client

program is available to retrieve a maildrop on a POP service host. In addition,

using the SMTP con�guration for delivery in MH, a user is able to specify a

search-list of service hosts (and networks) with which to try to post mail. Using

this search-list, when an MH user posts a draft, the post program will attempt

to establish an SMTP connection with each host in the list to post the message

until it succeeds. Initial experimentation with the split-UA in a local network

environment has proved quite successful.

The MZnet Environs

In 1983, the MZnet project[EStef84] at the University of California, Irvine

set out to study the problems involved with bringing Internet-class mail handling

facilities to personal computers. The project used Apple II computers running the

CP/M 2.2 operating system. Programming was done in a subset of the C language

called BDS C. The transport system was based on the MMDF PhoneNet software,

and implemented a split-slot arrangement between a personal computer and a

larger, centralized mail distribution system that performed user authentication and

provided a relatively secure mail transfer channel. The user agent, CP/MH, was

based on MH.

A conclusion of the experiment was that small personal computer systems

with dial-up phone connections constrain user agent systems design in ways that

require use of a split-slot interface between the UA and its supportingMTA, and that

this interface best provides the required services if it has error controlled command

and data transfer facilities, with interactive behavior. Another conclusion indicated

that a good design for a user agent in such a small personal computer environment

could be based on a very modular architecture, such as MH. A �nal conclusion was

that session-level authentication of the client UA is required for both posting and

delivery.

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 20

It should be noted that the MZnet project had a profound in
uence on the

development of the POP used by MH. A somewhat more detailed discussion of

the relations between the two environments can be found in the POP description

contained in the MH release.

A Final Note

With the �fth major release of the MH system, it has become clear that most

major increases in functionality can come only at the expense of either e�ciency or

portability. Although there has been great e�ort to keep MH portable to a number

of UNIX implementations,

9

the divergence in process management facilities, �le

system enhancements, and even C compiler capabilities has already presented

obstacles to some attempts to rehost the MH code.

There has been some discussion of implementing specialized MH daemons

that maintain context information over one or more sessions, thus decreasing the

amount of overhead involved in starting each MH command. Unfortunately, even

if such daemons were to be implemented, they would be very di�cult to move to

versions of UNIX without sophisticated process management facilities, and even

then the di�erences in \philosophies" of process management[WJoy83, EOlse84]

would tend to keep such daemons system speci�c. A better solution seems to be

simply to tune existing code.

Acknowledgements

The authors would like to thank Norman Z. Shapiro and Phyllis Kantar of

the Rand Corporation for their invaluable comments during the preparation of this

paper.

Distribution Information

For information concerning distribution mechanics for the current release of

MH, please contact:

Support Group

Attn: MH Distribution

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717 USA

714/856{6852

9

As of this writing, there are approximately 75 sites running mh.5 on �ve di�erent implementations

of UNIX.

References

[DCome83] D. Comer. The Computer Science Research Network CSnet: A

History and Status Report. Communications of the ACM 26, 10

(October, 1983), 747{753.

[DCroc79] D.H. Crocker, E.S. Szurkowski, D.J. Farber. An Internetwork

Memo Distribution Facility | MMDF. Appearing in Proceedings,

Sixth Data Communications Symposium, Asilomar, 1979, pp. 18{25.

[DCroc82] D.H. Crocker. Standard for the Format of ARPA Internet Text

Messages. Request for Comments 822. ARPA Internet Network

Information Center (NIC), SRI International (August, 1982).

[DKing84] D.P. Kingston, III. MMDFII: A Technical Review. Appearing in

Proceedings Usenix Summer '84 Conference, Salt Lake City, Utah,

1984, pp. 32{41.

[EAllm83] E. Allman. SENDMAIL | An Internetwork Mail Router.

Britton-Lee, Inc., Berkeley, California (July, 1983).

[EOlse84] E.W. Olsen. NetOS Concepts and Facilities. Local Network Systems,

Inc., Costa Mesa, California (August, 1984).

[EStef84] E.A. Stefferud, J.N. Sweet, T.P. Domae. MZnet: Mail Service for

Personal Micro-Computer Systems. Appearing in Proceedings, Second

International Symposium on Computer Message Systems, Nottingham,

U.K, 1984, pp. 293{302.

[FIPS98] Speci�cation for Message Format for Computer Based Message

Systems. National Bureau of Standards (January, 1983).

[HERMES] Bolt, Beranek, and Newman. Hermes User's Manual. for TOPS-20.

Bolt, Beranek, and Newman, Boston, MA (January, 1979).

[IP] Internet Protocol. Request for Comments 791 (milstd 1777).

Appearing in Internet Protocol Transition Workbook, ARPA Internet

Network Information Center (NIC), SRI International, 1981.

[JReyn84] J.K. Reynolds. Post O�ce Protocol. Request for Comments 918.

ARPA Internet Network Information Center (NIC), SRI International

(October, 1984).

Copyright
c

 1985, North Holland Publishing Company 21

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 22

[MButl85] M. Butler, J.B. Postel, et. al. Post O�ce Protocol - Version 2.

Request for Comments 937. ARPA Internet Network Information

Center (NIC), SRI International (February, 1985).

[MRose84a] M.T. Rose. The Rand MH Message Handling System: The UCI

BBoards Facility. Department of Computer and Information Sciences,

University of Delaware (October, 1984).

[MRose84b] M.T. Rose. The Rand MH Message Handling System: Tutorial.

Department of Computer and Information Sciences, University of

Delaware (October, 1984).

[MRose85a] M.T. Rose, J.L. Romine. The Rand MH Message Handling System:

User's Manual. UCI Version. Department of Information and Computer

Science, University of California, Irvine (January, 1985).

[MRose85b] M.T. Rose, E.A. Stefferud. Proposed Standard for Message

Encapsulation. Request for Comments 934. ARPA Internet Network

Information Center (NIC), SRI International (January, 1985).

[MRose85c] M.T. Rose, D.J. Farber, S.T. Walker. Design of the TTI Prototype

Trusted Mail Agent. Appearing in Proceedings, Second International

Symposium on Computer Message Systems, Washington, D.C., 1985

(to appear).

[SMTP] Simple Mail Transfer Protocol. Request for Comments 821. ARPA

Internet Network Information Center (NIC), SRI International

(August, 1982).

[TCP] Transmission Control Protocol. Request for Comments 793 (milstd

1778). Appearing in Internet Protocol Transition Workbook, ARPA

Internet Network Information Center (NIC), SRI International, 1981.

[WJoy83] W.N. Joy, E. Cooper, R.S. Fabry, S.J. Leffler, K. McKusick,

D. Mosher. 4.2bsd System Manual. Technical Report Number 5.

Computer Systems Research Group, University of California, Berkeley.

[X.400] Message Handling Systems: System Model-Service Elements,

Recommendation X.400, International Telegraph and Telephone

Consultative Committee (CCITT).

Appendix A

MH Commands

MH is composed of several UNIX programs, which in theory are fairly simple

and single-purposed. These commands are functionally grouped below:

Composing Mail

comp: compose a message

A program to originate a message. Usually, a special prompting editor front-

end, prompter, is used to �ll-in a composition template with the addressees

of the message, subject, and so forth.

dist : redistribute a message to additional addresses

A program that re-enters a message previously received by the user into the

message transport system. Only new addresses are added; the body of the

message is not changed in any way.

forw : forward messages

A program that encapsulates one or more messages in a new message draft.

In addition, the user may add initial and/or closing comments.

repl : reply to a message

A program that constructs a reply to a message using a reply template. The

template mechanism has su�cient generality to permit the user to \program"

the form of the reply draft based on the contents of the message being

replied-to.

send : send a message

A program that posts a draft with the message transport system. The

send program is usually invoked by one of the four preceding programs, and

performs simple front-end pre-processing prior to invoking the post program.

For example, if invoked in push'd mode, send will immediately relinquish

control of the user's terminal and post the message in the background. If

the posting fails, send will send back a failure notice to the user. If the user

had push'd the sending of the draft, then by default the draft being sent is

encapsulated in the failure notice. This permits easy burst'ing of the failure

notice to retrieve the original draft. Otherwise, if the posting was successful,

the draft is marked as having been sent.

whatnow : prompting front-end for send

A program which is called by comp, et. al., after the initial draft has been

Copyright
c

 1985, North Holland Publishing Company 23

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 24

generated. The MH user can specify a di�erent whatnow program, which

yields considerable extensibility.

whom: report to whom a message would go

A program which examines the addresses of the draft and expands all user-

de�ned aliases contained therein. Optionally, whom may actually interact

with the message transport system to determine the validity of the �nal

addresses. This program is also usually invoked by comp, et. al.

Posting Mail

ali : list mail aliases

A simple front-end to the MH aliasing mechanism.

ap: parse addresses 822{style

A useful debugging tool for PostMasters who wish to examine how MH

interprets an Internet address.

con
ict : search for alias/password con
icts

Another program used by system administrators to check the consistency of

MH alias �les, and portions of the local message transport agent.

install-mh: initialize the MH environment

A program which is automatically executed the �rst time a user issues an MH

command. This program performs once-only initialization of the user's MH

environment.

mhmail : send or read mail

A simple program generally used by other programs to generate messages.

The mhmail command is similar in purpose to the old BellMail program.

post : deliver a message

A complex MH back-end that interacts with the local message transport

agent to enter messages through the posting slot. (See the description of send

above).

Reading Mail

inc: incorporate new mail

A program that interacts with the local message transport agent to retrieve

messages from the user's maildrop.

msgchk : check for waiting mail

A program which reports the status of mail waiting in the user's maildrop.

show : show (list) messages

A program which lists messages to its standard output (usually the user's

terminal), possibly invoking another program to do the actual listing. Most

users of MH have show automatically call the mhl program to format the

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 25

message. The next and prev programs are simply ``show next'' and

``show prev'', respectively.

mhl : produce formatted listings of MH messages

A program which displays a message as directed by a template. This permits

the user to �lter out uninteresting headers and re-arrange other headers to a

particular preference. In addition to being invoked by show, the mhl program

is optionally also invoked by forw to format each message being forwarded;

invoked by repl to format the body of a message being replied-to, if that

message is being included in the reply draft; and, invoked by post to format

a message being sent as a blind-carbon-copy.

rmm: remove messages

A program that removes messages from an MH folder, optionally running a

user-de�ned program instead of deleting them. If no program is given, the

messages are \softly" removed, so they may possibly be recovered later.

scan: produce a one-line-per-message scan listing

A program that generates a scan listing for messages. Each line of the listing

contains date, source, subject, and possibly the initial body of the message.

Folder Handling

folder : set/list current folder/message

A program used to list information concerning the current folder, or set the

current folder and/or message.

folders: list all folders

A program to list information on all folders (actually, just a special case of

the folder command). Since the MH folder structure may be recursive, the

user can indicate that folders should recursively examine all folders.

re�le: �le message(s) in (an)other folder(s)

A program to move (or copy) messages from a source folder to one or more

destination folders.

rmf : remove folder

A program that deletes a folder and all messages therein.

Message Selection

anno: annotate messages

A program to arbitrarily annotate messages. If the user so desires, after

distributing, forwarding, or replying-to a message, MH will automatically

attach an annotation to the original message indicating the date and addresses.

mark : mark messages

A program to manipulate user-de�ned sequences (lists of messages). Usually,

mark is not employed directly by the MH user.

Reprinted from Computer Networks and ISDN Systems, 10(2), September, 1985 26

pick : select messages by content

A program to examine a list of messages and choose those which meet

a particular selection criterion. The pick program is often used in UNIX

back-quoted operations to pass message sequences to other MH commands.

sortm: sort messages

A program to sort a list of messages according to the date given in a particular

�eld.

Distribution List Handling

bbc: check on BBoards

A front-end to run msh on a list of distribution lists which the user isn't

current on.

bbl : manage a BBoard

A (depreciated) program used to manually manage the local archives of

a distribution list. These functions (archiving, expunging) are performed

automatically by MH.

burst : explode digests into messages

A program used to decapsulate messages from ARPA Internet digests. In

addition, messages which have been encapsulated during forwarding (i.e.,

with forw) can also be decapsulated using burst.

10

msh: MH shell (and BBoard reader)

A monolithic program used to implement MH commands on messages

arranged in a single �le (maildrop format). Useful since distribution lists are

kept in this format to minimize consumption of system resources.

pack : compress a folder into a single �le

A program which takes messages stored in MH format and places them in a

single �le (using the same format known by msh).

Interface to the UNIX File System

mhpath: print full pathnames of MH messages and folders

A program which mapsMH-style names into the UNIX �le naming convention.

10

Similarly, blind-carbon-copies may be decapsulated, though only socially mature users should do

so.

Contents

Page

Introduction . 1

The MH Philosophy . 2

The MH Environs . 3

The MH Pro�le . 4

Folders and Messages . 6

The Context File . 7

Templates . 7

Explaining All This to New Users . 7

A Few Advanced Features . 9

Draft Folders . 9

Message Selection . 9

Distribution Lists . 11

Encapsulation . 14

Encapsulation and Blind-Carbon-Copies 14

MH as a Record Handler . 15

Mapping Between Record Modes (DBMS/MHS) 16

Distributed Mail . 17

The ARPA Internet Environs . 18

The MZnet Environs . 19

A Final Note . 20

Acknowledgements . 20

Distribution Information . 20

References . 21

Appendix A: MH Commands . 23

This document (version #1.54) was T

E

Xset April 12, 1990 with DISS.STY v103.

i

