
Design of the TTI Prototype

Trusted Mail Agent

Marshall T. Rose

y

David J. Farber

Stephen T. Walker

Abstract

The design of the TTI prototype Trusted Mail Agent (TMA)

is discussed. This agent interfaces between two entities: a key

distribution center (KDC) and a user agent (UA). The KDC

manages keys for the encryption of text messages, which two

subscribers to a key distribution service (KDS) may exchange.

The TMA is independent of any underlying message transport

system.

Subscribers to the KDC are known by unique identi�ers,

known as IDs. In addition to distributing keys, the KDC also

o�ers a simple directory lookup service, in which the \real-

world" name of a subscriber may be mapped to an ID, or the

inverse mapping may be performed.

This document details three software components: �rst, a

prototype key distribution service, which has been running

in a TCP/IP environment since December, 1984; second, a

prototype trusted mail agent; and, third, modi�cations to an

existing UA, the Rand MH Message Handling system, which

permit interaction with the prototype TMA.

y

All three authors are with Trusted Technologies, Incorporated, POB 45, Glenwood, MD 21738,

USA. Telephone: 301/854{6889. In addition, Professor Farber is with the University of Delaware.

Design of the TTI Prototype

Trusted Mail Agent

Introduction

Initially, a brief model of a user community employing a trusted mail service

is introduced. Following this introduction, a prototype system is described which

attempts to meet the needs of a user community. Finally, open issues are discussed,

which are currently not satis�ed by the prototype system or its model of operation.

Two or more entities, called users, wish to communicate in a secure

environment. Depending on their available resources, di�erent levels of security

are possible. At the extreme, two parties with substantial resources may wish to

communicate in a fashion which prevents any third parties, known as adversaries,

from observing their communication. At this level, not only is an adversary

unable to capture the communication for analysis, but in fact, the adversary is

unaware that any communication is occurring at all. In most applications, this

level of security is prohibitively expensive. A more economic method is to translate

messages into a form which is useless to an adversary and then to communicate

those messages on an insecure medium.

This latter method requires the two users to have some sort of key with which

to \lock" the plaintext into ciphertext when transmitting, and then to \unlock"

the ciphertext back into useful form when receiving. Hence, there are two central

issues to deal with: �rst, keys must be generated, distributed, and maintained in

a secure fashion; and, second, the keys must be \intricate" enough so that sense

can't be made out of the ciphertext without knowledge of the key. The �rst part

is handled by a key distribution center (KDC), which maintains a list of users

and a set of keys for each pair of users. The second part relies on sophisticated

encryption and decryption algorithms. It is beyond the scope of this paper to

describe cryptographic techniques in detail. For a detailed survey of this area, the

reader should consult [VVoyd83].

In the context of our discussion (using the terminology of [X.400]), the

medium used to transport is supplied by a message transport system (MTS), which

is composed of one or more message transport agents (MTAs). Usually, the entire

MTS is distributed in nature, and not under a single administrative entity; in

contrast, an MTA is usually controlled by a single administration and resides in a

particular domain. At every end-point in the medium, a user agent (UA) acts on

behalf of a user and interfaces to a local MTA. This model is brie
y summarized in

Figure 1.

Copyright
c

 1985, IFIP TC-6 1

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 2

UA

MTA MTA : : : : : : MTA

UA

MTS

POSTING RECEIPT

RELAYING

Figure 1

The MTS Model

A message, in our context, consists of two parts: the headers and the body.

The headers are rigorously structured; they contain addressing information and

other forms useful to a UA. The body is freely formatted and is usually not

meaningful to a UA.

When a message is sent from one user to another, the following activities

occur: The originating user indicates to the UA the address of the recipient; the

UA then posts the message through a posting slot to an MTA, which involves

a posting protocol in which the validity of the address and the syntax of the

message are considered. Upon successful completion of the protocol, the MTA

accepts responsibility for delivering the message, or if delivery fails, to inform the

originating user of the failure. The MTA then decides if it can deliver the message

directly to the recipient; if so, it delivers the message through a delivery slot to

the recipient's UA, using a delivery protocol. If not, it contacts an adjacent MTA,

closer to the recipient, and negotiates its transfer (using a protocol similar to the

posting protocol). This process repeats until anMTA is able to deliver the message,

or an MTA determines that the message can't be delivered. In this latter case, a

failure notice is sent to the originating user.

It is important to note that there are two mappings which occur here. The

�rst, which is performed implicitly by the originating user, maps the name of the

recipient into the recipient's address; the second, which is performed explicitly by

the MTS, maps the address of the recipient into a route to get from the originator's

MTA to the recipient's MTA. These mappings are depicted in Figure 2.

Obviously, there is no guarantee that the MTS can be made secure, in any

sense of the word. This is particularly true if it is under several administrations.

Regardless of the number of administrations in the MTS, this problem quickly

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 3

user

UA

MTA MTA : : : : : : MTA

UA

user

MTS

name �! address

address �! route

Figure 2

Mappings in the MTS model

degenerates to a problem of Byzantine generals[LLamp82]. Further, trying to secure

each MTA in the path that a message travels is equally questionable.

To support secure communications in this environment, a new entity, the

trusted mail agent (TMA) is introduced into our model. A solution is to have the

UA interact with this entity both when posting a message and when taking delivery

of a message. The UA �rst contacts a TMA to encrypt the body of the message for

the recipient, prior to pushing it through the posting slot. Upon receipt from the

destination MTA, the UA examines the message and contacts the TMA to decipher

the body of the message from the source. An overview of the relationship between

the standardMTS model and the augmentations made for the Trusted Mail

1

system

is shown in Figure 3.

To achieve these tasks, the TMA interacts with a key distribution service

(KDS), which manages keys between pairwise users. At this point, a third mapping

takes place: the UA must be able to map addresses into the identi�er(s) by which

the originator and recipient are known by the TMA and KDS. These identi�ers

are known as KDS IDs, or simply IDs. Usually, a fourth mapping also occurs,

1

Trusted Mail is a trademark of Trusted Technologies, Incorporated.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 4

UA

MTA MTA : : : : : : MTA

UA

MTS

TMA TMAKDS

Figure 3

Modi�cations to the MTS model

which maps the ID of a user into the name of a user. In our context, there is an

exact one-to-one mapping between the name of a user and the ID of that user. In

contrast, there may be a one-to-many mapping between the name of a user and

that user's address in the MTS. Further, there are usually many di�erent routes

which a message may traverse when going from an originating user to a recipient

user.

The TMA is said to be trusted because it can be relied on to perform only

those actions speci�cally requested by the user. In the context of this paper,

this means, given proper construction and maintenance of the TMA, that the

software will communicate with the KDC in some secure fashion to negotiate key

relationships and that it will not disclose those key relationships to other parties.

Furthermore, the body of mail messages exchanged between users which employ a

trusted mail agent will be unintelligible to other parties. Finally, a recipient of a

message receives authenticated information from the trusted mail agent as to the

identify of the sender.

Hence, when each user employs a TMA, end-to-end encryption occurs at the

UA level (to avoid any problems with malicious MTAs).

2

Any adversary listening

in on the MTS, may observe messages, but make no sense out of them (other than

rudimentary tra�c analysis). Note, however, that since the medium itself is not

secure, an adversary may still introduce new messages, corrupt messages, or remove

2

Note that in the scope of this system, the end-points are the user agents, not the hosts they reside

on. In fact, it may very well be the case that the user agent and the local message transport agent

do not reside on the same host.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 5

messages, as they traverse the MTS. In the �rst two cases, however, the recipient

would be suspicious because the adversary lacks the encrypting key employed by

the source user. In the third case, the source user can retransmit the message after

a suitable time. Of course, there is no built-in retransmission policy | this aspect

depends on the user's sending mail and is beyond the scope of the system.

It is important to understand the target community for the Trusted Mail

system described herein. In particular, the TMA is intended for a commercial

and not a military environment. This distinction is important, since it is the

fundamental assumption of this paper that the latter community has much stricter

requirements than the former. Because of this, the prototype system is able to

make certain simplifying assumptions which permit it to operate in a mode which

is less secure than military applications would permit. Although these issues are

explored in greater detail at the end of the paper, for the moment recall that, like

most qualities, trustedness is not absolute: there are varying degrees of trustedness,

and as a system becomes more trusted, it becomes more expensive, in some sense,

to operate and maintain.

It is perhaps instructive at this point to consider why the introduction of a key

distribution center is appropriate in this environment, and why the fundamental

assumption that trusted mail agents do not directly communicate with each other

is necessary. Although a user agent is able to converse with the local message

transport agent in real-time, it is frequently not able to communicate with other

user agents in real-time. Furthermore, considering the vast problems and overhead

of trying to establish secure communications from \scratch" (a problem far beyond

the scope of this paper), it is would not be a good idea to try and communicate

key relationships with other user agents, even if it were always possible to do so.

In addition, by separating the trusted aspects of the message transport system

from the system itself, many other advantages can be seen. These are presented in

greater detail at the end of the paper.

The discussion thus far has considered only a single recipient. In practice, a

user might wish to send to several others, using a di�erent key for each. Hence each

copy of the message is encrypted di�erently, depending on the particular recipient

in question. Note that this has the e�ect of un-bundling message transfer in the

MTS, as advanced MTAs tend to keep only a single copy of the message for any

number of recipients in order to save both cpu, disk, and I/O resources.

For example, in some existing mail systems, if a message was sent to n users

on a remote system, then the n addresses would be sent from the source MTA to

the remote MTA along with one copy of the message. Upon delivery, the remote

MTA would deliver a copy to each of the n recipients, but the virtual wire between

the source MTA and the recipient MTA was burdened with only one copy of the

message. But in a secure environment, since a di�erent key is used by the source

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 6

user when communicating with each of the n recipients, n di�erent messages will

be posted with the local MTA, and the advantages of recipient bundling are lost.

Along these lines however, private discussion groups may wish to avoid

this problem by establishing access to a single ID for their use. In this case, a

subscriber to the KDS may actually have more than one ID, one for \personal"

use and one for each discussion group. The appropriate ID is used when posting

messages to the discussion group. Naturally the administrative policy for deciding

who is allowed to use the KDS ID of a discussion group is left to the moderator

of the group. Observant readers will note that this vastly decreases the aspect

of secure communications for the discussion group. This method is suggested

as a compromise which permits the bundling of messages for multiple recipients

to reduce MTS tra�c. The price is high however, as a compromise on behalf

of any member of the discussion group compromises the entire group. For large

discussion groups and a bandwidth limited MTS, this price may be worth paying.

The prototype implementation of the TMA supports multiple recipients but not

multiple KDS IDs.

Having described this environment for communication, the designs of a KDS

and TMA which form the heart of the TTI Trusted Mail system are discussed.

The prototype system was developed on a VAX

3

-11/780 running 4.2bsd UNIX

4

.

The system is based on the ansi draft[FIKM] for �nancial key management, but

diverges somewhat in operation owing to the di�erences between the electronic mail

(CBMS) and electronic funds (EFT) environments. Note however that the ansi

data encryption algorithm[DEA, FIPS46] is used in the current implementation. A

public-key cipher system was not considered as the basis for the prototype since,

to the authors' knowledge, an open standard for a public-key system has yet to be

adopted by the commercial community. In contrast, the ansi draft for �nancial key

management appears to be receiving wide support from the commercial community.

In the description that follows, a large number of acronyms are employed to

denote commonly used terms. In order to aid the reader, these are summarized in

Table 1.

The Key Distribution Service

The prototype version of the KDS was designed to provide key distribution

services for user agents under both the same or di�erent administrations. As a

result, the means by which a trusted mail agent connects to a key distribution

server is quite
exible. For example, the prototype system supports connections

via standard terminal lines, dial-ups (e.g., over a toll-free 800 number), UNIX pipes,

and over TCP sockets[IP, TCP]. In the interests of simplicity, for the remainder

of this paper, a TCP/IP model of communication is used. Initially, a server on a

3

VAX is a trademark of Digital Equipment Corporation.

4

UNIX is a trademark of AT&T Bell Laboratories.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 7

Abbrev. Term Context

CBC Cipher Block Chaining DES

CBMS Computer Based Message System

CKD Key Distribution Center EFT

CKS Checksumming DES

CSM Cryptographic Service Message

DEA Data Encryption Algorithm

DES Data Encryption Standard

DSM Disconnect Service Message MCL

ECB Electronic Code Book DES

EFT Electronic Funds Transfer

IDK Key Identi�er CSM

ID Identi�er KDS

IP Internet Protocol

IV Initialization Vector CSM

KA Authentication Key CSM

KDC Key Distribution Center CBMS

KDS Key Distribution Server CBMS

KD Data-encrypting Key CSM

KK Key-encrypting Key CSM

MAC Message Authentication Code CSM

MCL Message Class CSM

MH The Rand Message Handling System

MIC Message Integrity Code CSM

MK Master Key CSM

MTA Message Transport Agent CBMS

MTS Message Transport System CBMS

ORG Message Originator CSM

RCV Message Receiver CSM

RIU Request Identi�ed User MCL

RSI Request Service Initialization MCL

RUI Request User Identi�cation MCL

TCP Transmission Control Protocol

TMA Trusted Mail Agent CBMS

TTI Trusted Technologies, Inc.

UA User Agent CBMS

Table 1

Abbreviations used in this paper

well-known service host in the ARPA Internet community listens for connections

on a well-known port.

5

As each connection is established, it services one or more

transactions over the lifetime of the session. When all transactions for a session

have been made, the connection is closed. If the necessary locking operations are

performed by the server to avoid the usual database problems, then more than one

connection may be in progress simultaneously. Of course, a time-out facility should

5

The term well known in this context means that the location of the service is known a priori to

the clients.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 8

also be employed to prevent a rogue agent from monopolizing the key distribution

server.

Once a session has been started, the client (a.k.a. TMA) initiates transactions

with the server (a.k.a. KDS). Each transaction consists of the exchange of two

or three cryptographic service messages (CSMs): the client sends a request,

the server attempts to honor the request and sends a response, and, if the

server responded positively, the client then acknowledges the transaction. By

exchanging these cryptographic service messages, the KDS and the TMA are able

to communicate key relationships. Obviously, the relationships themselves must

be transmitted in encrypted form.

6

Hence, not only are key relationships between

two TMAs communicated, but key relationships between the KDS and the TMA

are communicated as well.

This leads us to consider the key relationships that exist between a TMA and

the KDS. A client usually has three keys dedicated for use with the server. The

�rst is the master key (denoted MK), which has an in�nite cryptoperiod, and is

rarely used. This key is distributed manually. The second is the key-encrypting key

(denoted KK), which has a shorter cryptoperiod. Whenever a KK is transmitted

to the TMA, it is encrypted with the master key. The third is the authentication

key (denoted KA), which is used to authenticate transactions that do not contain

data keys (a count �eld is also used to avoid play-back attacks). Whenever a

KA is transmitted to the TMA, it is encrypted with the key-encrypting key.

When transactions contain keys, an associated count �eld is included to indicate

the number of keys encrypted with the key-encrypting key used. Although not

used by the prototype implementation, a production system would employ audit

mechanisms to monitor usage histories.

Currently four types of requests are honored by the KDS: two key relationship

primitives, and two name service primitives. The type is indicated by the message

class (MCL) of the �rst cryptographic service message sent in the transaction.

As each message class is discussed, the appropriate datastructures used by the

KDS are introduced. Space considerations prevent a detailed description of the

information exchanged in each transaction. Appendix B of this paper presents a

short example of an interaction between the KDS and a TMA.

The �rst two requests are used to create (or retrieve) key relationships, and

to destroy key relationships:

The request service initialization (RSI) message class is used to establish

a key-encrypting key (KK) relationship between the TMA and another TMA, or

between the TMA and the KDS. As implied by the name, a key-encrypting key is

6

Otherwise an adversary could simply impersonate a TMA and ask for the desired key relationships.

Similarly, this also prevents an adversary from successfully impersonating a key distribution server.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 9

used to cipher keys which are used to cipher data exchanged between peers. These

other keys are called data keys (KDs).

The disconnect service message (DSM) message class is used to discontinue

a KK-relationship between the TMA and another TMA, or between the TMA and

the KDS. This prevents keys which are felt to have been compromised, or are

vulnerable to compromise, from receiving further use in the system. It should

be noted that, owing to mail messages (not CSMs) in transit, a discontinued key

relationship may be needed to decipher the key used to encipher a mail message.

The prototype KDS supports this capability.

In addition to maintaining an MK/KK/KA triple for each TMA, the KDS

also remembers KK-relationships between TMAs. The reason for this stems from a

fundamental di�erence between the electronic funds transfer and computer-based

message system worlds. The KDS assumes that no two arbitrarily chosen TMAs can

communicate in real-time, and as a result, TMAs do not exchange cryptographic

service messages. (See Appendix C for a more detailed discussion.) This means

that when a TMA establishes a KK-relationship with another TMA, the former

TMA may start using the KK before the latter TMA knows of the new KK-

relationship. In fact, it is quite possible for a KK-relationship to be established,

used, and then discontinued, all unilaterally on the part of one TMA. It is up to

the KDS to retain old cryptographic material (possibly for an inde�nite period

of time), and aid the latter TMA in reconstructing KK-relationships as the need

arises. Naturally, discontinued KKs are not used to encode any new information,

but rather to decode old information. (Again, refer to Appendix C for additional

details.)

The other two requests are used to query the directory service aspects of the

key distribution server:

The request user identi�cation (RUI) message class is used to identify a

subscriber to the KDS. Both the KDS and TMA are independent of any underlying

mail transport system (MTS). As a result, a subscriber to the KDS is known

by two unique attributes: a \real-world" name, and a KDS identi�er (ID). The

user of a mail system, or the UA, is responsible for mapping an MTS-speci�c

address (e.g., MRose@UDEL.ARPA) to the person associated with that maildrop (e.g.,

``Marshall T. Rose''). When conversing with the KDS, the TMA uses the KDS

ID of another user to reference that person's TMA. Since it is inconvenient to

remember the IDs (as opposed to people's names), the KDS provides the RUI

message class to permit a TMA to query the mapping between names and IDs.

If the KDS cannot return an exact match, it may respond with a list of possible

matches (if the identifying information given was ambiguous), or it may respond

with a response that there is no matching user.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 10

Finally, the request identi�ed user (RIU) message class performs the inverse

operation: given a KDS ID, a \real-world" name is returned. This request is useful

for disambiguating unsuccessful RUI requests and in boot-strapping a TMA.

The KDS maintains two directories: a private directory and a public directory.

The private directory contains all information on all clients to the KDS. The public

directory is a subset of this, and is used by the KDS when processing RUI and

RIU requests.

7

As a result, certain clients of the KDS may have unlisted IDs and

names.

The Trusted Mail Agent

The prototype version of the TMA was designed to interface directly to the

user agent in order to maximize transparency to the user. In present form, the

TMA is available as a load-time library under 4.2bsd UNIX, although e�orts are

currently underway to transport the TMA to a PC-based environment.

The software modules which compose the TMA contain a rich set of interfaces

to the KDS. In addition, the TMA manages a local database, so responses from the

KDS may be cached and used at a later time. In all cases, the KDS is consulted

only if the information is not present in the TMA database, or if the information

in question has expired (e.g., KK-relationships). This caching activity minimizes

connections to the KDS. Although connections are relatively cheap in the ARPA

Internet, substantial savings are achieved for PCs which contact the KDS over a

public phone network (dial-up) connection.

The TMA performs mappings between pairs of the following objects: user

names, KDS IDs, and MTS addresses. The TMA considers all trusted mail agents,

including itself, as a user name, KDS ID, and one or moreMTS addresses. Although

the TMA does not interpret addresses itself, in order to simplify mail handling,

the TMA remembers the relationship between these objects so the user enters this

information only once.

Initially, when a TMA is booted, the user supplies it with the master key and

the user's KDS ID. Both of these quantities are assigned by the personnel at the

key distribution center, and subsequently transmitted to the user via an alternate,

bonded service.

8

The TMA connects with the KDS and veri�es its identity. From

this point on, the TMA manages its KK-relationships between the KDS and other

TMAs without user intervention.

The current implementation of the TMA assumes a \general memo framework"

in the context of the Standards for ARPA Internet Text Messages[DCroc82]:

7

In the prototype implementation, the two directories are, for the moment, identical.

8

In this fashion, the problems of boot-strapping over an unsecure medium are avoided.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 11

1. A message consists of two parts: the headers and the body. A blank line

separates the headers from the body.

2. Each (virtual) line in the headers consists of a keyword/value pair,

in which the keyword is separated from the value by a colon (:).

The headers are rigorously structured in the sense that they contain

addressing and other information useful to a user agent.

3. The body is freely formatted and must not be meaningful to a user

agent. However, as will be seen momentarily, the body of encrypted

messages must have an initial �xed format which the TMA enforces.

This format is widely called \822" after the number assigned to the de�ning

report[DCroc82].

9

To support the cipher activities described below, the TMA contains internal

routines to perform the following DES functions: electronic code book (ECB)

for key encryption, cipher block chaining (CBC) for mail message encryption,

checksumming (CKS) for mail message and CSM authentication. Readers interested

in these di�erent modes of operation for the DES should consult [FIPS81].

Encrypting Mail

To encipher a message, the method used is a straightforward adaptation

of the standard encrypting/authentication techniques (though the terminology is

tedious). Consider the following notation:

a

x

(s): the checksum of the string s using the key x (DEA checksumming

authentication)

a

x+y

(s): the checksum of the string s using the exclusive-or of the two keys x

and y

e

x

(y): the encryption of the key y using the key x (DEA electronic code book

encryption)

e

x;y

(s): the encryption of the string s using the key x and initialization vector

y (DEA cipher block chaining encryption)

h: the headers of the message

and,

b: the body of the message

9

Although an 822{style framework is employed by the TMA prototype, the 822 ``Encrypted:''

header is not currently present in encrypted messages. This is due to a design decision which

assumes that nothing in the headers of a message is sacred to the transport system, and that

\helpful" munging might occur at any time. In the real world, such helpfulness is often a problem.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 12

For each message to be encrypted, a data key, initialization vector, authentication

key (KD/IV/KA) triple is generated by a random process. (It goes without saying

that the integrity of the system depends on the process being random). Then, for

each user to receive a copy of the encrypted message, the following actions are

taken:

First, the headers of the message are output in the clear. Then, a banner

string, i, is constructed and placed at the beginning of the body of the message:

ENCRYPTED MESSAGE: TTI TMA

which identi�es the message as being encrypted by the TTI TMA. Following

the banner string is a structure, m, which takes on the syntax and most of the

semantics of a cryptographic service message:

MCL/ MAIL

RCV/ rcvid

ORG/ orgid

IDK/ kkid

KD/ e

kk

(ka)

KD/ e

kk

(kd)

IV/ e

kd

(iv)

MIC/ a

ka

(b)

MAC/ a

kd+ka

(m)

After this, the encrypted body is output, e

kd;iv

(b). In short, the entire output

consists of

h+ i+m+ e

kd;iv

(b):

The purpose of the structure m is many-fold. The MCL �eld indicates the

structure m's type; currently only the type MAIL is generated and understood.

The RCV and ORG �elds identify the intended recipient of the message and the

originator. The IDK �eld identi�es the key-encrypting key, KK, used to encrypt

the next two �elds. The �rst KD �eld has the encrypted authentication key, KA,

used to calculate the MIC of the plaintext of the body of the message. After

the body of the message is deciphered, a

ka

(b) is calculated and compared to the

value of the MIC �eld. Hence, the MIC �eld authenticates the message body. The

second KD �eld has the encrypted data encrypting key, KD, which along with the

encrypted initialization vector in the IV �eld was used to generate the ciphertext

of the body. Finally, the MAC �eld authenticates the m structure itself. The use

of a data key, initialization vector, authentication key (KD/IV/KA) triple permits

us to perform key distribution in a hierarchical fashion and allows the system to

use a KK-relationship over a longer cryptoperiod without fear of compromise.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 13

The TMA provides three primary interfaces to a UA to send encrypted mail:

the �rst takes a �le-descriptor to a message and returns a structure g (called a

group) describing the ciphertext version of the body (this structure contains a KD,

IV, and KA generated at random, along with a �le-descriptor to the plaintext

headers, a �le-descriptor to the ciphertext body, and the checksum of the plaintext

body); the second takes a user entry (or MTS address) and g, and returns a

�le-descriptor to the encrypted message for that user (or MTS address); the third

takes g and performs clean-up operations. The chief advantage to this scheme of

encryption is that if the message is to be sent to more than one recipient, then the

MIC and the encrypted body need only be calculated once, since the KD, IV, and

KA remain constant (only the KK's change with each recipient, hence for each

copy of the encrypted message, only the structure m need be re-calculated).

There are, however, a few subtleties involved: �rst, the MTS usually accepts

only 7{bit characters, so the encrypted text is exploded to consist of only printable

characters;

10

second, since the MTS may impose limits on the length of a line,

each line of output is limited to 64 characters; and, third, since the body may

require trailing padding, during encryption one last unit of 8 bytes is written

(and encrypted), naming the number of characters (presently, nulls) padded in the

previous 8 bytes (0 : : : 7).

Decrypting Mail

To decipher a message, the method is also straightforward: The headers are

output in the clear. The banner string is essentially ignored, and the structure m

is consulted to identify the correct key-encrypting key. The TMA checks to see if

it knows of that KK. If not, it asks the KDS to supply it. From that point, the

KA, KD, and IV are deciphered. The m structure is then authenticated. With the

correct key, the remainder of the body is deciphered, and all except for the last

16 bytes are output. The last 8 bytes indicate how many of the previous 8 bytes

should be output. So, the appropriate number of bytes is output, and the plaintext

body is authenticated and compared to the MIC. Needless to say, as the body is

deciphered, it is imploded back to 8{bit characters and lines are restored to their

previous lengths. To indicate that the message was correctly deciphered, a new

header of the form

X-KDS-ID: orgid (originator's name)

is appended to the headers of the message. Note that this provides an authentication

mechanism. Note, further, that the UA did not have to know the identity of the

sender of the message.

10

As a rule, in all CSMs, when encrypted information is transmitted, it is exploded after encryption

by the sender, and imploded prior to decryption by the receiver.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 14

Modi�cations to MH

MH is a public domain UA for UNIX, which is widely used in dealing with

both a large number of electronic mail application and a large number of messages.

Although this document does not intend to describe MH, parts of the system are

described as they relate to the TMA. Readers interested in MH should consult

either the user's manual[MRose85a] for a detailed description, or [MRose85d] for a

higher-level description.

To modify MH in order to make use of a TMA, three programs were changed

(with a high degree of transparency to the user), and two new programs were

introduced.

In MH, when a user wishes to send a composed draft (which may be an

entirely new message, a re-distribution of a message, a forwarding of messages, or

a reply to a message), the user invokes the send program. This program performs

some minor front-end work for a program called post which actually interacts with

the MTS. A new option to the send and post programs, the `-encrypt' switch, is

introduced. If the user indicates

send -encrypt

then post encrypts the messages it sends.

When sending an encrypted message, post �rst checks that each addressee

has a mapping to a KDS ID during address veri�cation. Then, instead of batching

all addresses for a message in a single posting transaction, for each addressee, post

consults the TMA for the appropriately encrypted text and posts that instead.

(Appendix A discusses the reasons for this more fully.) Hence, assuming the user

has established mappings between MTS addresses and KDS IDs, the TMA does

all the work necessary to encrypt the message, including contacting the KDS as

necessary.

11

In MH, when a user is noti�ed that new mail has arrived, the inc program is

run. As each message is incorporated into the user's message handling area, a scan

(one-line) listing of the message is generated.

By default, the inc program upon detecting one or more encrypted messages,

after the scanning process, asks the TMA to decipher the message, and if successful,

scans the deciphered messages. This action can be inhibited with the `-nodecrypt'

switch. Hence, if the user wishes to retain messages in encrypted form, inc can

be told to note the presence of encrypted messages, but otherwise not to process

them. By using the MH user pro�le mechanism, inc can be easily customized to

11

Once the TMA establishes a connection to the KDS, it retains that connection until the UA

terminates. This is done to minimize connections to the KDS. In the context of MH, since the

trusted mail agent is active over the lifetime of an invocation of a program such as post, this means

that the connection is terminated just before the program terminates.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 15

re
ect the user's tastes. Again, the actions of the TMA are transparent to the user.

In fact, if encrypted mail is received from users unknown to the TMA, it queries

the KDS as to their identity prior to retrieving the KK-relationship.

If inc fails to decrypt a message for some reason, or if inc was told not to

decrypt a message, the decipher program can be used. This simple program merely

deciphers each message given in its argument list. The decipher program can be

given the `-insitu' switch, which directs it to replace the ciphertext version of

the message with the plaintext version; or, the `-noinsitu' switch can be used

indicating that the ciphertext version of the message should be left untouched and

the plaintext version should be listed on the standard output.

Finally, the tma program is used to manipulate the TMA database, containing

commands to boot the database, add new users to the database, and to establish

mappings between addresses and users in the TMA database. This program can

also be used to disconnect KKs between other TMAs, and the KK/KA between

itself and the KDS.

Appendix A of this paper contains a transcript of an MH session.

Remarks

We now consider the merit of the system described. After presenting some

of the basic strengths of the system and a few unresolved questions, the discussion

centers on the simplifying assumptions made by the system, and how these can be

defended in a non-military environment.

Strengths

It can be argued that the prototype system (and the augmented model in

which it �nds its basis) present many strengths.

Perhaps the most important is the high-level of independence from the MTS

enjoyed by the system. As a result, since the TMA does not interact directly

with the MTS, it can be made to be completely free from any MTS-speci�c

attributes, such as naming, addressing, and routing conventions. Furthermore,

when interfacing a Trusted Mail system, no modi�cations need be made to the MTS

or local MTA.

In addition to the systems-level advantage to this scheme, users of the system

pro�t as well, since many disjoint MTSs can be employed by a user with a single

TMA. This reduces the number of weaknesses in the system and allows a user to

keep a single database of \trusted" correspondents. It should also make analysis

and veri�cation of the TMA easier.

Of course from the user-viewpoint, once the TMA has been initially booted,

all key management is automatic. Not only does this reduce the risk of compromise

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 16

of cryptographic material (given proper construction and maintenance of the

TMA), but it relieves the user of a tedious and error-prone task.

Finally, although the KDS described herein is used to support Trusted Mail,

other applications which require key management, could employ the services o�ered

by the key distribution center.

Open Questions

At present, there are many restrictions on the prototype implementation

described. Some of these result from that fact that the implementation is a

prototype and not a production system. Others deal with more fundamental

issues.

In terms of the TMA, the expiration delay for keys is hard-wired in; it should

be user-settable. In the prototype version, the KK and KA with the KDS are good

for 2 days or 10 uses (whichever comes �rst), while a KK for use with another

TMA is good for 1 day or 5 uses. In actual practice, keys with long cryptoperiods

might be good for 6 months or 100 uses, while keys with short cryptoperiods might

be good for 1 month or 25 uses. The choice of actual values is an open question

beyond the scope of prototype system.

12

In many respects, this issue is a classic

trade-o�: with relatively small cryptoperiods, an adversary has less chance of

breaking a key, but with longer cryptoperiods less connections have to be made to

the key distribution server.

A fundamental issue, owing to di�erences between the EFT and CBMS

environments, is that the KDS implements only a subset of the ansi draft and the

semantics of certain operations have changed somewhat. It would be nice to unify

the CBMS and EFT views of a key distribution center (in the former environment,

the center is called a KDC, while in the latter environment, the center is known

as a CKD). Appendix C of this paper discusses the di�erences between the two

perspectives in greater detail.

At present, the relationship between errors in the TMA and the posting

process is an open question. For example, if an address doesn't have a mapping in

the TMA database, post treats this as an address veri�cation error. This prevents

the draft from being posted. The philosophy of the UA is unclear at this point,

with respect to how recovery should occur. A second area, also in question, deals

with the way in which plaintext and ciphertext versions of a message are present

in a system. Clearly, it is a bad idea to make both versions available, but since

the TMA doesn't try to concern itself with �rst party observation, there seems to

be little possibility of preventing this behavior. The best that can be done, at this

stage, is simply to choose a consistent policy that user's should attempt to adhere

12

The current values were chosen by guess work. Although not necessarily technically sound, the

small numbers were very good for debugging purposes.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 17

to. The software can help somewhat in implementing this policy, but it certainly

can't circumvent the user.

The prototype is built on the assumption that a single key distribution server

is present. Since the ansi draft[FIKM] makes provisions for key translation centers,

the Trusted Mail prototype should perhaps be made to operate in a more diverse

environment. Until the issues become clearer, this remains open.

Finally, for distribution lists, a large number of people would need to share

the same KDS ID. The current implementation doesn't support this. Each TMA

database is for a particular ID. A user with multiple IDs would need multiple

databases, or the database should be re-organized.

Weaknesses

As pointed out earlier, this prototype system situates itself in a commercial,

not military, environment. With respect to this decision, several aspects of

the system are now discussed, which we feel are acceptable in a commercial

environment, but which would be considered weaknesses in a military environment:

1. Tra�c Flow

The prototype TMA makes no attempt whatsoever to prevent or confuse

tra�c analysis by augmenting tra�c
ow.

2. The Database of KDS Subscribers

Since information returned by the request user identi�cation (RUI) and

request identi�ed user (RIU) MCLs are returned in the clear, this allows

an adversary to ascertain subscribers to the KDS, and perhaps deduce

some information about the system. Without knowledge of the master key

however, an adversary could not impersonate a subscriber though. Still, in

the military sense, this is a weakness. However, all this assumes that the

database maintained by the KDS accurately re
ects the real-world.

3. Multiple Recipients

It is possible, though not proven to the authors' knowledge, that the scheme

used to avoid encrypting the body of a message more than once for multiple

recipients might permit one of the recipients who is also an adversary to

compromise the key relationship between the sender and another recipient.

The scenario goes like this: When a message is being prepared for encryption,

a single KD/IV/KA triple is generated to encrypt the body. Since the sender

has a di�erent key relationship with each recipient, each message sent is

di�erent, since the structure m depends not only on the KD/IV/KA triple

but also on the key relation between the sender and a particular recipient.

Now suppose that one of the recipients, r

1

, in addition to receiving the copy

of the message meant for him/her also intercepts a copy of the message

destined for another recipient, r

2

. At this point, the recipient r

1

has both

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 18

the plaintext and ciphertext version of the body, the plaintext version of the

KD/IV/KA triple, and the ciphertext version of the KD/IV/KA triple that

was generated using the key relationship between the sender and the recipient

r

2

. The question is: can r

1

now deduce the key relationship between the

sender and r

2

?

If so, then the way that the TMA attempts to minimize the use of encryption

resources is a weakness. But, even if this is possible, given relatively short

cryptoperiods for key relationships between TMA peers, this becomes a

non-problem.

4. Discussion Groups

As discussed earlier, the proposed method of associating a single KDS ID with

the membership of a discussion group does introduce a signi�cant weakness

for the security of messages sent to the discussion group. Since the TMA

does not assume a general broadcast facility, it appears that there are no

good solutions to the problem of discussion group tra�c. Of course, it is easy

enough to simply send to each member of the group.

For the sake of argument, let's assume that the discussion group has n

members. Now, since a di�erent key relationship would exist between the

sender and each of the n recipients, the structure m would be di�erent for

each recipient and so a di�erent message would have to be sent to each

recipient. To make matters worse, if one rejects the way the TMA handles

multiple recipients, not only does the MTS get burdened with n di�erent

messages, but the sender's TMA gets burdened by having to encrypt the body

of the message n times. For meaningful values of n (say on the order of 500,

or even 25), the amount of resources required for any trusted discussion group

are simply too costly.

Compromises, Compromises

Each of the possible weaknesses discussed above represent a compromise

between the expense of the system and the level of security it can provide.

The �rst two areas, if addressed by the TMA, could result in much less

background information being available to an adversary. In an application where it

is important that an adversary not know who is talking to whom, or who can talk

at all, this is very important. It is the authors' position that in the commercial

environment, this issue is not paramount. By ignoring the issue of tra�c
ow, the

TMA has a lot less work to do and the MTS is kept clear of \useless" messages.

By keeping the information returned by the RUI and RIU MCLs in the clear, the

complexity of the TMA is signi�cantly reduced.

The second two areas, if addressed by the TMA, could result in a lesser

probability of tra�c being deciphered by an adversary. Regardless of the

application, this is always extremely important. However, the authors' feel

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 19

that the compromise made by the TMA in these two issues is not substantial,

and does not result in an explicit weakness when a message is sent to multiple

recipients (note that when there is only a single recipient of a message, these two

policies can not introduce weaknesses). In return, e�cient use can be made of

both the MTS and the TMA when messages are being sent to multiple recipients.

Given scarce resources or large numbers of recipients, this approach may prove to

be quite winning.

Of course, much work remains to be done to prove the success of the TMA in

all four of these areas.

Acknowledgements

The prototype implementation described herein utilizes a public domain

implementation of the DES algorithm[DEA] which was originally implemented by

James J. Gillogly in May, 1977 (who at that time was with the Rand Corporation,

and is now a�liated with Gillogly Software). Interfaces to Dr. Gillogly's

implementation were subsequently coded by RichardW. Outerbridge in September,

1984 (who at that time was with the Computer Systems Research Institute at the

University of Toronto, and is now a�liated with Perle Systems, Incorporated).

The authors would like to acknowledge Dennis Branstad, Elaine Barker,

and David Balensen of the National Bureau of Standards for their comments

on the prototype system and insights on the ANSI draft[FIKM]. In particular,

Dr. Branstad originally suggested the method used for encrypting a single message

for multiple recipients under di�erent keys.

The authors (and all those who have read this paper) would like to thank Willis

H. Ware of the Rand Corporation, and Jonathon B. Postel of the USC/Information

Sciences Institute. Their extensive comments resulted in a much more readable

paper. In addition, the authors would like to thank Dr. Stephen P. Smith and

Major Douglas A. Brothers for their insightful comments.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 20

References

[DCroc82] D.H. Crocker. Standard for the Format of ARPA Internet Text

Messages. Request for Comments 822. ARPA Internet Network

Information Center (NIC), SRI International (August, 1982).

[DEA] Data Encryption Algorithm, X3.92{1981, American National

Standards Institute, 1981.

[FIKM] Financial Institution Key Management, X9.17{198 (draft), American

National Standards Institute, 198 .

[FIPS46] Data Encryption Standard, Federal Information Processing Standards,

Publication 46, 1977.

[FIPS81] DES Modes of Operation, Federal Information Processing Standards,

Publication 81, 1980.

[IP] Internet Protocol. Request for Comments 791 (milstd 1777).

Appearing in Internet Protocol Transition Workbook, ARPA Internet

Network Information Center (NIC), SRI International, 1981.

[LLamp82] L. Lamport, R. Shostak, M. Pease. The Byzantine Generals Problem.

ACM Transactions on Programming Languages and Systems 4 (July,

1982), 382{401.

[MRose85a] M.T. Rose, J.L. Romine. The Rand MH Message Handling System:

User's Manual. UCI Version. Department of Information and Computer

Science, University of California, Irvine (January, 1985).

[MRose85d] M.T. Rose, E.A. Stefferud, J.N. Sweet. MH: A Multifarious User

Agent. Computer Networks (to appear).

[TCP] Transmission Control Protocol. Request for Comments 793 (milstd

1778). Appearing in Internet Protocol Transition Workbook, ARPA

Internet Network Information Center (NIC), SRI International, 1981.

[VVoyd83] V.L. Voydock, S.T. Kent. Security Mechanisms in High-Level

Network Protocols. Computing Surveys 15, 2 (June, 1983), 135{171.

[X.400] Message Handling Systems: System Model-Service Elements,

Recommendation X.400, International Telegraph and Telephone

Consultative Committee (CCITT).

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 21

1 % tma -add -user "UCI Portal" uci@udel-dewey

2 3: "UCI Portal"

3 uci@udel-dewey

4

5 % comp

6 To: uci

7 Fcc: +outbox

8 Subject: test message

9 --------

10 mumble, mumble.

11 ^D

12

13 What now? send -encrypt

14 -- Address Verification --

15 -- Local Recipients --

16 uci: address ok

17 -- Address Verification Successful --

18 -- Posting for All Recipients --

19 -- Local Recipients --

20 uci: address ok

21 -- Recipient Copies Posted --

22 -- Filing Folder Copies --

23 Fcc outbox: folder ok

24 -- Folder Copies Filed --

25 Message Processed

Figure 4

Sending Encrypted Mail

Appendix A: An MH Session

In the following, the user ``Marshall T. Rose'' logged onto host

``udel-dewey'', wishes to send a message to a user known as the ``UCI Portal''

(a system maintenance account). As shown in Figure 4, line 1, the user �rst estab-

lishes a mapping between the name ``UCI Portal'' and the address uci@udel-

dewey. Once this mapping is performed, it remains in e�ect until the user indicates

otherwise to the TMA. When the tma program is invoked, it consults the TMA

database to see if that user is known. If not, it contacts the KDS to ask for the

KDS ID associated with the user. If the response is successful (in this case, the

KDS ID is ``3''), then the TMA updates its database. The tma program indicates

in its output the KDS ID associated with the user, along with all known addresses

(in this case, only one). So, once the name to address mapping has been described

the user, the user agent, MH, deals only with the address, while the trusted mail

agent deals with the name and KDS ID aspects of the user.

Next, the comp program is invoked to compose a new draft on line 5. The

user addresses the local user ``uci'' in the To: �eld, and indicates that a plaintext

copy should be kept in the folder ``+outbox''. After entering the subject and

text of the draft, the user enters What now? level on line 13. At this point, the

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 22

1 % inc

2 Incorporating new mail into inbox...

3

4 1+E02/28 0227-EST mrose test message <<ENCRYPTED MESSAGE: TTI

5

6 Incorporating encrypted mail into inbox...

7

8 1+ 02/28 0227-EST mrose test message <<mumble, mumble. >>

Figure 5

Receiving Encrypted Mail

user directs MH to send the draft in encrypted form. The resulting output is

verbose (a default for send for this user) but instructive. Initially, all addresses in

the draft are veri�ed on lines 14 to 17. Two forms of veri�cation occur: �rst, the

MTS is asked to verify the address as much as possible. For local addresses, the

MTS decides if the name has a maildrop associated with it. For remote addresses,

the MTS decides if the host is known to it. The second type of veri�cation occurs

with the TMA. For all addresses, the TMA is asked if it can �nd a mapping from

the address to a KDS ID.

The reason MH goes to all this trouble is a philosophical issue. Since the

copy of the encrypted draft is di�erent for each recipient, post tries to verify that

all recipients can be successfully posted prior to actually posting the di�erent

ciphertext versions of the draft. This behavior is not optimal in terms of cycles,

but is perhaps \correct" from a UA perspective.

Finally, the draft is actually posted, and the folder carbon-copy is �led.

Some time later, the UCI portal is informed that new mail has arrived. As

shown in Figure 5, the inc program is run. The ``E'' prior to the date of the

message indicates that inc has detected the message to be encrypted. Since the

user did not inhibit inc from deciphering the message, it proceeds to do so.

Finally, it may be instructive to see what the encrypted message looked

like when it was delivered to the portal's maildrop, and the �nal message after

deciphering. Figures 6 and 7 show these respectively. In particular, note that the

``X-KDS-ID:'' �eld has been introduced in Figure 7 after successfully deciphering

the message. The presence of this �eld authenticates the sender of the message.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 23

Received: From localhost.DELAWARE by udel-dewey.DELAWARE id a022713

;28 Feb 85 2:27 EST

To: uci@udel-dewey

Subject: test message

Date: 28 Feb 85 02:27:16 EST (Thu)

Message-ID: <4057.478423636@udel-dewey>

From: mrose@udel-dewey

ENCRYPTED MESSAGE: TTI TMA

(

MCL/MAIL

RCV/3

ORG/17

IDK/850228072730

KD/e36813a3882eebd1

KD/fa8b8ac657476669

IV/Ef9d283565431b103

MIC/fdb927fb

MAC/50e9de30

)

a13774f652d844762c4fc03c2f4e201b9d2f57eadb00546c

Figure 6

Message Prior to Decryption

Received: From localhost.DELAWARE by udel-dewey.DELAWARE id a022713

;28 Feb 85 2:27 EST

To: uci@udel-dewey

Subject: test message

Date: 28 Feb 85 02:27:16 EST (Thu)

Message-ID: <4057.478423636@udel-dewey>

From: mrose@udel-dewey

X-KDS-ID: 17 (Marshall T. Rose)

mumble, mumble.

Figure 7

Message After Decryption

Appendix B: A Short Exchange

The simple nature of the interchange between the user andMH in Appendix A

completely hides any interactions between the TMA and the KDS. Let us brie
y

examine an exchange that might occur after the destination TMA receives the

message shown in Figure 6.

To begin, the TMA must ascertain what it knows about the sender of the

message, which claims to have a KDS ID of 17. That is, the TMA must �rst

consider what key relationships it has with the sender. For the sake of argument,

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 24

1 <--- (

2 <--- MCL/RIU

3 <--- RCV/17

4 <--- ORG/3

5 <--- KDC/TTI

6 <--- EDC/1a1fbbba

7 <---)

8 ---> (

9 ---> MCL/RTR

10 ---> RCV/17

11 ---> ORG/3

12 ---> CTA/1

13 ---> USR/"Marshall T. Rose"

14 ---> KDC/TTI

15 ---> MAC/2ebde134

16 ---> EDC/96b183de

17 --->)

18 <--- (

19 <--- MCL/ACK

20 <--- RCV/17

21 <--- ORG/3

22 <--- KDC/TTI

23 <--- EDC/59a8ddcc

24 <---)

Figure 8

Ascertaining the Sender

suppose that this purported subscriber is unknown to the TMA. In this case, the

�rst step it must undertake is to ascertain the validity of this subscriber.

As shown in Figure 8 on lines 1{7, the TMA does this by establishing a

connection to the KDS and issuing an request identi�ed user (RUI) MCL.

13

If

the response by the KDS is positive, the TMA will use the information returned

when generating the ``X-KDS-ID:'' �eld for authentication. The response CSM

returned by the KDS includes an authentication checksum (the MAC �eld on

line 15) and a transaction count (the CTA �eld on line 12) to prevent spoo�ng by a

process pretending to be the KDS. The TMA then acknowledges that the response

from the server was acceptable on lines 18{24.

The next step is to ascertain the actual key relationship used to encrypt the

structure m, which appears after the identifying string. The TMA consults the

13

In point of fact, the very �rst thing that the TMA does after connecting to the KDS is verify

that the key relationships between the KDS and the TMA are valid (have not expired). If the

key relationship between the two has expired, the TMA issues a request service initialization RSI

MCL to establish a new key relationship. This relationship contains a key-encrypting key (KK) and

an authentication key (KA). Once a valid key relationship exists between the KDS and the TMA,

transactions concerning other key relationships may take place.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 25

1 <--- (

2 <--- MCL/RSI

3 <--- RCV/17

4 <--- ORG/3

5 <--- IDK/850228072730

6 <--- KDC/TTI

7 <--- SVR/KD.IV.KK

8 <--- EDC/83679e14

9 <---)

10 ---> (

11 ---> MCL/RTR

12 ---> RCV/17

13 ---> ORG/3

14 ---> KK/095f9d6b87f57871

15 ---> CTA/2

16 ---> KD/527fbb5593efd318

17 ---> KD/1dcab338be1e7a09

18 ---> IV/E02db5e598b2823ae

19 ---> EDK/850618075332

20 ---> KDC/TTI

21 ---> MAC/12cbbdf5

22 ---> EDC/8cd0c4a8

23 --->)

24 <--- (

25 <--- MCL/ACK

26 <--- RCV/17

27 <--- ORG/3

28 <--- KDC/TTI

29 <--- EDC/59a8ddcc

30 <---)

Figure 9

Ascertaining the Key Relationship

IDK �eld in m, and if this relationship is unknown to it, then the KDS is asked to

disclose the key relationship.

As shown in Figure 9 on lines 1{9, This is done by issuing a request service

initialization (RSI) MCL and specifying the particular key relationship of interest.

The KDS consults its database, and if the exact key relationship between the

two indicated TMAs can be ascertained, it returns this information. The key

relationship is encrypted using the key relationship between the KDS and the

TMA, and the usual count and authentication �elds are included.

Once the TMA knows the key relationship used to encrypt the structure m,

it can decider the structure and ascertain the KD/IV/KA triple used to encrypt

the body of the message.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 26

Appendix C: Di�erences between the ANSI and TTI drafts

The di�erences between the ansi draft standard for �nancial institution key

management, and the TTI draft's speci�cation for trusted mail handling, are

considered.

The concept of a key distribution center (CKD in the ansi draft, KDC in the

TTI draft) environment di�ers. In the ansi draft, only one party talks to the key

distribution server (KDS); in the TTI draft, both parties talk to the KDS. This

leads to a number of di�erences in the two protocols. The reason for this shift

in the TTI draft is somewhat subtle: although both parties can talk to the KDS,

the mail transfer system (MTS) environment is such that both user agents (UAs)

are unable to contact each other in real-time. Hence, a detailed two-way protocol

between them is prohibitively expensive.

14

Before discussing the di�erences between the two drafts, let us consider the

di�erences in the two environments: in the electronic mail environment, the two

end-to-end peers need not be simultaneously online. Electronic mail relies on a

communication service with potentially large delays in transit between message

transfer agents (MTAs). A basic concept of \mail" is that an originator must release

the enveloped message to a \transfer agent" before delivery can be attempted to a

recipient. In contrast, in the electronic funds environment, the two peers make use

of a virtual-circuit service. This means that they can synchronize much easier and

inter-operate in a more direct fashion.

Service protocols are based on the notion of requests and responses. A client

issues a request to a server, the server processes the request and returns a response.

Depending on the complexity of the protocol, the client may now respond to the

server's message, or might issue a new request, or might terminate the connection.

As delays in the network increase, along with the possibility of loss or

corruption or re-ordering of messages, it becomes more di�cult to implement a

service protocol. In the case of a high-level protocol making use of a virtual-

circuit service, most problems can be ignored, as the virtual-circuit service masks

out problems in the network by using sequences, positive (and/or negative)

acknowledgments, windows, and so on.

Sadly, electronic mail cannot utilize a virtual-circuit throughout the MTS

(although individual MTA-wise connections are (in theory) virtual-circuit based).

This means that implementing a real-time or interactive service protocol between

two endpoints (a.k.a. UAs) in the MTS is very di�cult. As a result, the complexity

of an end-to-end protocol in the MTS (in terms of requests and responses) is

severely constrained. For all practical purposes, an MTA can assume datagram

service and nothing else: messages might be re-ordered; messages might not reach

14

In the words of Einar A. Ste�erud: \Every interesting connection has at least two end-points |

connections with only one end-point are always uninteresting."

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 27

their destination; messages might be corrupted (though this is unlikely); in cases

of failure, a notice might be generated, or might not.

In terms of the environment in which cryptographic service messages (CSMs)

must
ow, the high degree of delay and uncertainty make the implementation of a

complex end-to-end protocol between UAs prohibitively expensive. Hence, a KDC

is needed, to which each UA can connect using a virtual-circuit service, at posting

and delivery time. The TTI draft terms such a user agent a trusted mail agent

(TMA). Since both TMAs can connect to the KDS at di�erent times using di�erent

media, the KDS maintains state information about the key relationships between

di�erent TMAs and manages those relationships appropriately. Since connections

to the KDS can be expensive in terms of resources, each TMA caches information

received from the KDS appropriately.

That's the gist of the argument as to why the TTI draft di�ers from the ansi

draft. It might be possible to include CSMs in the messages which UAs exchange,

but management of these CSMs can not be done reliably or in a straightforward

fashion owing to the datagram nature of the service o�ered by the MTS. Finally, it

should be noted that in the TTI draft, the KDS never initiates a connection with

a TMA, rather it is the TMAs which connect to the KDS.

In the following, the di�erences between the two drafts are highlighted. Minor

di�erences between the two are not discussed.

In the ansi draft, x4:2 (p. 22) discusses the requirements for the automated

key management architecture. The TTI draft has somewhat more \depth", since

the ansi draft does not make use of a master key (MK) to fully automate the

distribution of key-encrypting keys (KK).

The ansi draft states that once a KK-relationship is discontinued by either

of that pair, the relation is not to be re-used for any subsequent activity. This

can't be guaranteed in the prototype implementation. If one of the TMAs wishes

to discontinue a key, not only does it have to inform the KDS, but the other TMA

as well. Since the TTI draft does not permit CSMs between TMA-peers, the latter

action doesn't seem possible. However, there is a solution. Whenever a message is

deciphered, the TMA checks the e�ective date of the key used to encrypt a message

it has received, and if the key is newer than the one it currently uses, it considers

the older key to be discontinued.

Furthermore, although the environment in the TTI draft is that of a key

distribution center, the notion of an ultimate recipient is not present, since all clients

connect to the KDS at one time or another. In addition, the di�erences between

the environs envisioned by the two drafts become even more pronounced when

one considers that the KDS distributes key-encrypting keys to TMAs, although the

ansi draft speci�cally prohibits this.

Reprinted from Proceedings, Second International Symposium on Computer Message Systems, 1985 28

Finally, there is another important technical di�erence between the two

drafts: every request to the KDS by the TMA results in a speci�cally de�ned

response from the KDS to the TMA. Furthermore, if the KDS responds in a positive

manner, then the TMA acknowledges this. This three-way interaction is used to

ensure consistency between the states of the KDS and the TMA. The ansi draft

does not require such behavior, and might pro�t from some �nite-state analysis to

ascertain unsafe (in terms of correctness) states which are reachable.

Contents

Page

Introduction . 1

The Key Distribution Service . 6

The Trusted Mail Agent . 10

Encrypting Mail . 11

Decrypting Mail . 13

Modi�cations to MH . 14

Remarks . 15

Strengths . 15

Open Questions . 16

Weaknesses . 17

Compromises, Compromises. 18

Acknowledgements . 19

References . 20

Appendix A: An MH Session . 21

Appendix B: A Short Exchange. 23

Appendix C: Di�erences between the ANSI and TTI drafts 26

This document (version #2.60) was T

E

Xset April 12, 1990 with DISS.STY v103.

i

